Publications

Refine Results

(Filters Applied) Clear All

Backdoor poisoning of encrypted traffic classifiers

Summary

Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks against an encrypted network traffic classifier. We consider attacks based on padding network packets, which has the benefit of preserving the functionality of the network traffic. In particular, we consider a handcrafted attack, as well as an optimized attack leveraging universal adversarial perturbations. We find that poisoning attacks can be extremely successful if the adversary has the ability to modify both the labels and the data (dirty label attacks) and somewhat successful, depending on the attack strength and the target class, if the adversary perturbs only the data (clean label attacks).
READ LESS

Summary

Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks...

READ MORE

Contingent routing using orbital geometry in proliferated low-earth-orbit satellite networks

Published in:
2022 IEEE Military Communications Conf., MILCOM, 28 November - 2 December 2022.

Summary

Optimum adaptive routing in proliferated low-earth-orbit (pLEO) satellite networks requires intensive computation. The very small size, light weight, and low power of individual satellites in such networks makes a centralized, terrestrial, SDN-like approach to routing computation an attractive solution. However, it is highly desirable to have a distributed backup routing capability onboard each satellite that can maintain service if the central computational node(s) fail or lose their pathway(s) to upload routing data frequently to each satellite. This paper presents a routing algorithm based on orbital geometry that has a very low computation and storage requirements and is suitable as a backup routing capability in the event of failure of a centralized routing calculation node or nodes. Path failure rate, path latency, and link resource usage are simulated for a 360-satellite Walker Delta constellation with 4 inter-satellite link (ISL) terminals per satellite, and with up to 10% of the satellites having failed. For the fully intact satellite constellation, path failure rate is zero (identical to a shortest path routing algorithm), while mean latency and average link resource usage are shown to be approximately 12% and 13% higher, respectively, than with shortest path routing. With 10 random satellite failures in the constellation, the geometric algorithm has a path failure rate of less than 0.5%, while the mean latency and link resource usage are approximately 12% and 16% higher, respectively, than with shortest path routing.
READ LESS

Summary

Optimum adaptive routing in proliferated low-earth-orbit (pLEO) satellite networks requires intensive computation. The very small size, light weight, and low power of individual satellites in such networks makes a centralized, terrestrial, SDN-like approach to routing computation an attractive solution. However, it is highly desirable to have a distributed backup routing...

READ MORE

Automated contact tracing assessment

Published in:
MIT Lincoln Laboratory Report TR-1287

Summary

The COVID-19 pandemic placed unprecedented demands on the global public health systems for disease surveillance and contact tracing. Engineers and scientists recognized that it might be possible to augment the efforts of public health teams, if a system for automated digital contact tracing could be quickly devised and deployed to the population of smartphones. The Private Automated Contact Tracing (PACT) protocol was one of several digital contact tracing proposals offered worldwide. PACT’s mission—to preserve individuals’ privacy and anonymity while enabling them to quickly alert even nearby strangers of a likely risky exposure—was adopted by Google and Apple and realized in the Exposure Notifications (EN) service and API for mobile application development. The Exposure Notifications system, like many digital proximity tools, is based on Bluetooth signal strength estimation, and keeps much of the necessary information and computation on the smartphones themselves. It implemented a decentralized approach to contact tracing: the public health authority, and other governmental authorities, cannot access the records of an individual’s encounters with others; nor is physical location used or shared by the service. Although the service is available on most modern iOS and Android devices, it is not enabled by default; the individual must opt in to use a particular region’s implementation of the service, either by installing the regional app or by enrolling through a menu of regions in the operating system settings. Likewise, individuals must affirm their consent before the service can share anonymized infection status with the regional public health authority, and alert recent close contacts. The widespread availability of Exposure Notifications through Apple and Google’s platforms has made it a de facto world standard. Determining its accuracy and effectiveness as a public health tool has been a subject of intense interest. In July 2020, CDC’s Innovative Technologies Team designated MIT LL and the PACT team as trusted technical advisors on the deployment of private automated contact tracing systems as part of its overall public health response to COVID-19. The Innovative Technologies Team sought to answer the following key question regarding automated contact tracing: Does automated contact tracing have sufficient public health value that it is worthwhile to integrate it at scale into existing and evolving manual contact tracing systems? Rapidly rising caseloads necessitated parallel-path assessment activities of most mature systems at the time. When access to the Google and Apple Exposure Notifications system became available, MIT LL focused the assessment efforts on the systems being built and deployed. There were two immediate and significant challenges to observing and quantifying the performance of the system as a whole: first, the privacy preserving design decisions of PACT and the system implementers denied access to system-level performance metrics, and second, obtaining accurate “ground truth” data about risky encounters in the population, against which to measure the detector performance, would require an unacceptable level of effort and intrusion. Therefore, MIT LL designed a set of parallel research activities to decompose the problem into components that could be assessed quantifiably (Bluetooth sensor performance, algorithm performance, user preferences and behaviors), components that could be assessed qualitatively (potential cybersecurity risks, potential for malicious use), and components that could be modeled based on current and emergent knowledge (population-level effects). The MIT LL research team conducted early assessments of the privacy and security aspects of new EN app implementations and closely reviewed the available system code exercised by the apps, before conducting a series of phone-to-phone data collections both in the laboratory and in simulated real-world conditions. The data from these experiments fed into models and visualization tools created to predict and understand the risk score output of candidate “weights and thresholds” configurations for EN, i.e., to predict the performance of the system as-built against ground truth data for distance and duration of “exposure”. The data and performance predictions from this effort helped to inform the global and local community of practice in making configuration decisions, and can help to predict the performance of future versions of similar tools, or alternative implementations of the current system. We conducted a human factors and usability review of early app user interfaces and messaging from public health, and designed a follow-on large-scale survey to investigate questions about user trust and system adoption decisions. The results of the human factors, user trust, and adoption studies were used by U.S. public health jurisdictions to make adjustments to public-facing communications, and were shared with Apple and Google to improve the user interface. Information gathered from public health experts enabled us to better understand conventional contact tracing workflows and data streams, and we incorporated that information into an agent-based model of “hybrid” contact tracing plus Exposure Notifications. We then combined it with emerging reports on vaccination, mask effectiveness, social interaction, variant transmissibility, and our own data on the sensitivity and specificity of the Bluetooth “dose” estimator, to predict system-level effects under various conditions. Finally, we helped to establish a network of Exposure Notifications “practitioners” in public health, who surfaced desirable system-level key performance indicators (implemented during 2021 and 2022, in the Exposure Notifications Private Analytics system, or ENPA). At the conclusion of the program, many of the initial conditions of the pandemic had changed. The Exposure Notifications service was available to most of the world, but had only been deployed by 28 U.S. states and territories, and had not been adopted by much of the population in those regions. High case rates during the Omicron surge (December 2021 – January 2022) and newly available ENPA data offered the first hints at calculating “real” state-level performance metrics, but those data belong to the states and many are cautious about publishing. Although Google and Apple have stated that Exposure Notifications was designed for COVID-19, and will not be maintained in its current form after the pandemic ends, the public health and engineering communities show clear interest in using the “lessons learned” from Exposure Notifications and other similar solutions to preserve the capabilities developed and prepare better systems for future public health emergencies. The intent of this report is to document the work that has been completed, as well as to inform where the work could be updated or adapted to meet future needs.
READ LESS

Summary

The COVID-19 pandemic placed unprecedented demands on the global public health systems for disease surveillance and contact tracing. Engineers and scientists recognized that it might be possible to augment the efforts of public health teams, if a system for automated digital contact tracing could be quickly devised and deployed to...

READ MORE

On randomization in MTD systems

Published in:
Proc. of the 9th ACM Workshop on Moving Target Defense, MTD ’22, 7 November 2022.

Summary

Randomization is one of the main strategies in providing security in moving-target-defense (MTD) systems. However, randomization has an associated cost and estimating this cost and its impact on the overall system is crucial to ensure adoption of the MTD strategy. In this paper we discuss our experience in attempting to estimate the cost of path randomization in a message transmission system that used randomization of paths in the network. Our conclusions are (i) the cost crucially depends on the underlying network control technology, (ii) one can reduce this cost by better implementation, and (iii) reducing one type of cost may result in increased costs of a different type, for example a higher device cost. These suggest that estimating the cost of randomization is a multivariable optimization problem that requires a full understanding of the system components.
READ LESS

Summary

Randomization is one of the main strategies in providing security in moving-target-defense (MTD) systems. However, randomization has an associated cost and estimating this cost and its impact on the overall system is crucial to ensure adoption of the MTD strategy. In this paper we discuss our experience in attempting to...

READ MORE

Predicting ankle moment trajectory with adaptive weighted ensemble of LSTM network

Published in:
2022 IEEE High Perf. Extreme Comp. Conf. (HPEC), 19-23 September 2022, DOI: 10.1109/HPEC55821.2022.9926370.

Summary

Estimations of ankle moments can provide clinically helpful information on the function of lower extremities and further lead to insight on patient rehabilitation and assistive wearable exoskeleton design. Current methods for estimating ankle moments leave room for improvement, with most recent cutting-edge methods relying on machine learning models trained on wearable sEMG and IMU data. While machine learning eliminates many practical challenges that troubled more traditional human body models for this application, we aim to expand on prior work that showed the feasibility of using LSTM models by employing an ensemble of LSTM networks. We present an adaptive weighted LSTM ensemble network and demonstrate its performance during standing, walking, running, and sprinting. Our result show that the LSTM ensemble outperformed every single LSTM model component within the ensemble. Across every activity, the ensemble reduced median root mean squared error (RMSE) by 0.0017-0.0053 N. m/kg, which is 2.7 – 10.3% lower than the best performing single LSTM model. Hypothesis testing revealed that most reductions in RMSE were statistically significant between the ensemble and other single models across all activities and subjects. Future work may analyze different trajectory lengths and different combinations of LSTM submodels within the ensemble.
READ LESS

Summary

Estimations of ankle moments can provide clinically helpful information on the function of lower extremities and further lead to insight on patient rehabilitation and assistive wearable exoskeleton design. Current methods for estimating ankle moments leave room for improvement, with most recent cutting-edge methods relying on machine learning models trained on...

READ MORE

Affective ratings of nonverbal vocalizations produced by minimally-speaking individuals: What do native listeners perceive?

Published in:
10th Intl. Conf. Affective Computing and Intelligent Interaction, ACII, 18-21 October 2022.

Summary

Individuals who produce few spoken words ("minimally-speaking" individuals) often convey rich affective and communicative information through nonverbal vocalizations, such as grunts, yells, babbles, and monosyllabic expressions. Yet, little data exists on the affective content of the vocal expressions of this population. Here, we present 78,624 arousal and valence ratings of nonverbal vocalizations from the online ReCANVo (Real-World Communicative and Affective Nonverbal Vocalizations) database. This dataset contains over 7,000 vocalizations that have been labeled with their expressive functions (delight, frustration, etc.) from eight minimally-speaking individuals. Our results suggest that raters who have no knowledge of the context or meaning of a nonverbal vocalization are still able to detect arousal and valence differences between different types of vocalizations based on Likert-scale ratings. Moreover, these ratings are consistent with hypothesized arousal and valence rankings for the different vocalization types. Raters are also able to detect arousal and valence differences between different vocalization types within individual speakers. To our knowledge, this is the first large-scale analysis of affective content within nonverbal vocalizations from minimally verbal individuals. These results complement affective computing research of nonverbal vocalizations that occur within typical verbal speech (e.g., grunts, sighs) and serve as a foundation for further understanding of how humans perceive emotions in sounds.
READ LESS

Summary

Individuals who produce few spoken words ("minimally-speaking" individuals) often convey rich affective and communicative information through nonverbal vocalizations, such as grunts, yells, babbles, and monosyllabic expressions. Yet, little data exists on the affective content of the vocal expressions of this population. Here, we present 78,624 arousal and valence ratings of...

READ MORE

Contrast-enhanced ultrasound to detect active bleeding

Published in:
J. Acoust. Soc. Am. 152, A280 (2022)

Summary

Non-compressible internal hemorrhage (NCIH) is the most common cause of death in acute non-penetrating trauma. NCIH management requires accurate hematoma localization and evaluation for ongoing bleeding for risk stratification. The current standard point-of-care diagnostic tool, the focused assessment with sonography for trauma (FAST), detects free fluid in body cavities with conventional B-mode imaging. The FAST does not assess whether bleeding is ongoing, at which location(s), and to what extent. Here, we propose contrast-enhanced ultrasound (CEUS) techniques to better identify, localize, and quantify hemorrhage. We designed and fabricated a custom hemorrhage-mimicking phantom, comprising a perforated vessel and cavity to simulate active bleeding. Lumason contrast agents (UCAs) were introduced at clinically relevant concentrations (3.5×108 bubbles/ml). Conventional and contrast pulse sequence images were captured, and post-processed with bubble localization techniques (SVD clutter filter and bubble localization). The results showed contrast pulse sequences enabled a 2.2-fold increase in the number of microbubbles detected compared with conventional CEUS imaging, over a range of flow rates, concentrations, and localization processing parameters. Additionally, particle velocimetry enabled mapping of dynamic flow within the simulated bleeding site. Our findings indicate that CEUS combined with advanced image processing may enhance visualization of hemodynamics and improve non-invasive, real-time detection of active bleeding.
READ LESS

Summary

Non-compressible internal hemorrhage (NCIH) is the most common cause of death in acute non-penetrating trauma. NCIH management requires accurate hematoma localization and evaluation for ongoing bleeding for risk stratification. The current standard point-of-care diagnostic tool, the focused assessment with sonography for trauma (FAST), detects free fluid in body cavities with...

READ MORE

Science applications of phased array radars

Summary

Phased array radars (PARs) are a promising observing technology, at the cusp of being available to the broader meteorological community. PARs offer near-instantaneous sampling of the atmosphere with flexible beam forming, multifunctionality, and low operational and maintenance costs and without mechanical inertia limitations. These PAR features are transformative compared to those offered by our current reflector-based meteorological radars. The integration of PARs into meteorological research has the potential to revolutionize the way we observe the atmosphere. The rate of adoption of PARs in research will depend on many factors, including (i) the need to continue educating the scientific community on the full technical capabilities and trade-offs of PARs through an engaging dialogue with the science and engineering communities and (ii) the need to communicate the breadth of scientific bottlenecks that PARs can overcome in atmospheric measurements and the new research avenues that are now possible using PARs in concert with other measurement systems. The former is the subject of a companion article that focuses on PAR technology while the latter is the objective here.
READ LESS

Summary

Phased array radars (PARs) are a promising observing technology, at the cusp of being available to the broader meteorological community. PARs offer near-instantaneous sampling of the atmosphere with flexible beam forming, multifunctionality, and low operational and maintenance costs and without mechanical inertia limitations. These PAR features are transformative compared to...

READ MORE

Modeling real-world affective and communicative nonverbal vocalizations from minimally speaking individuals

Published in:
IEEE Trans. on Affect. Comput., Vol. 13, No. 4, October 2022, pp. 2238-53.

Summary

Nonverbal vocalizations from non- and minimally speaking individuals (mv*) convey important communicative and affective information. While nonverbal vocalizations that occur amidst typical speech and infant vocalizations have been studied extensively in the literature, there is limited prior work on vocalizations by mv* individuals. Our work is among the first studies of the communicative and affective information expressed in nonverbal vocalizations by mv* children and adults. We collected labeled vocalizations in real-world settings with eight mv* communicators, with communicative and affective labels provided in-the-moment by a close family member. Using evaluation strategies suitable for messy, real-world data, we show that nonverbal vocalizations can be classified by function (with 4- and 5-way classifications) with F1 scores above chance for all participants. We analyze labeling and data collection practices for each participating family, and discuss the classification results in the context of our novel real-world data collection protocol. The presented work includes results from the largest classification experiments with nonverbal vocalizations from mv* communicators to date.
READ LESS

Summary

Nonverbal vocalizations from non- and minimally speaking individuals (mv*) convey important communicative and affective information. While nonverbal vocalizations that occur amidst typical speech and infant vocalizations have been studied extensively in the literature, there is limited prior work on vocalizations by mv* individuals. Our work is among the first studies...

READ MORE

Multimodal physiological monitoring during virtual reality piloting tasks

Summary

This dataset includes multimodal physiologic, flight performance, and user interaction data streams, collected as participants performed virtual flight tasks of varying difficulty. In virtual reality, individuals flew an "Instrument Landing System" (ILS) protocol, in which they had to land an aircraft mostly relying on the cockpit instrument readings. Participants were presented with four levels of difficulty, which were generated by varying wind speed, turbulence, and visibility. Each of the participants performed 12 runs, split into 3 blocks of four consecutive runs, one run at each difficulty, in a single experimental session. The sequence of difficulty levels was presented in a counterbalanced manner across blocks. Flight performance was quantified as a function of horizontal and vertical deviation from an ideal path towards the runway as well as deviation from the prescribed ideal speed of 115 knots. Multimodal physiological signals were aggregated and synchronized using Lab Streaming Layer. Descriptions of data quality are provided to assess each data stream. The starter code provides examples of loading and plotting the time synchronized data streams, extracting sample features from the eye tracking data, and building models to predict pilot performance from the physiology data streams.
READ LESS

Summary

This dataset includes multimodal physiologic, flight performance, and user interaction data streams, collected as participants performed virtual flight tasks of varying difficulty. In virtual reality, individuals flew an "Instrument Landing System" (ILS) protocol, in which they had to land an aircraft mostly relying on the cockpit instrument readings. Participants were...

READ MORE