Publications

Refine Results

(Filters Applied) Clear All

Energy resilience: exercises for Marine Corps installations

Published in:
Marine Corps Gazette, Vol. 106, No. 2, February 2022, p. 20-24.
Topic:
R&D group:

Summary

Microgrids are areas that are self-sufficient for power that can controllably disconnect from the incoming utility feed and control generation assets in conjunction with changing load requirements. They are increasingly being touted as a way to improve installations energy resilience because they allow installations to decouple from the larger electric grid if it fails and continue to provide power in the face of growing natural and man-made threats to Marine Corps installations. However, before commanders can put resources toward upgrading infrastructure, they need to identify and understand their vulnerabilities. A key way to do this is by holding exercises designed to simulate grid failures and outages either in a tabletop manner or in realtime. These exercises also help personnel train for disruptions, understand their impact on operations, and identify unknown interdependencies that can be just as important as investing in resilient technology and the physical electric grid. In order for the equipment to work, personnel have to know how to employ it and commands need to understand how outages will affect their installations. These types of exercises are as important as the physical infrastructure or ensuring the energy resilience of Marine Corps installations and the missions that depend on them in the future.
READ LESS

Summary

Microgrids are areas that are self-sufficient for power that can controllably disconnect from the incoming utility feed and control generation assets in conjunction with changing load requirements. They are increasingly being touted as a way to improve installations energy resilience because they allow installations to decouple from the larger electric...

READ MORE

EEG alpha and pupil diameter reflect endogenous auditory attention switching and listening effort

Published in:
Eur. J. Neurosci., 2022, pp. 1-16.

Summary

Everyday environments often contain distracting competing talkers and background noise, requiring listeners to focus their attention on one acoustic source and reject others. During this auditory attention task, listeners may naturally interrupt their sustained attention and switch attended sources. The effort required to perform this attention switch has not been well studied in the context of competing continuous speech. In this work, we developed two variants of endogenous attention switching and a sustained attention control. We characterized these three experimental conditions under the context of decoding auditory attention, while simultaneously evaluating listening effort and neural markers of spatial-audio cues. A least-squares, electroencephalography (EEG) based, attention decoding algorithm was implemented across all conditions. It achieved an accuracy of 69.4% and 64.0% when computed over non-overlapping 10 and 5-second correlation windows, respectively. Both decoders illustrated smooth transitions in the attended talker prediction through switches at approximately half of the analysis window size (e.g. the mean lag taken across the two switch conditions was 2.2 seconds when the 5-second correlation window was used). Expended listening effort, as measured by simultaneous EEG and pupillometry, was also a strong indicator of whether the listeners sustained attention or performed an endogenous attention switch (peak pupil diameter measure (p = 0.034) and minimum parietal alpha power measure (p = 0.016)). We additionally found evidence of talker spatial cues in the form of centrotemporal alpha power lateralization (p = 0.0428). These results suggest that listener effort and spatial cues may be promising features to pursue in a decoding context, in addition to speech-based features.
READ LESS

Summary

Everyday environments often contain distracting competing talkers and background noise, requiring listeners to focus their attention on one acoustic source and reject others. During this auditory attention task, listeners may naturally interrupt their sustained attention and switch attended sources. The effort required to perform this attention switch has not been...

READ MORE

Tools and practices for responsible AI engineering

Summary

Responsible Artificial Intelligence (AI)—the practice of developing, evaluating, and maintaining accurate AI systems that also exhibit essential properties such as robustness and explainability—represents a multifaceted challenge that often stretches standard machine learning tooling, frameworks, and testing methods beyond their limits. In this paper, we present two new software libraries—hydra-zen and the rAI-toolbox—that address critical needs for responsible AI engineering. hydra-zen dramatically simplifies the process of making complex AI applications configurable, and their behaviors reproducible. The rAI-toolbox is designed to enable methods for evaluating and enhancing the robustness of AI-models in a way that is scalable and that composes naturally with other popular ML frameworks. We describe the design principles and methodologies that make these tools effective, including the use of property-based testing to bolster the reliability of the tools themselves. Finally, we demonstrate the composability and flexibility of the tools by showing how various use cases from adversarial robustness and explainable AI can be concisely implemented with familiar APIs.
READ LESS

Summary

Responsible Artificial Intelligence (AI)—the practice of developing, evaluating, and maintaining accurate AI systems that also exhibit essential properties such as robustness and explainability—represents a multifaceted challenge that often stretches standard machine learning tooling, frameworks, and testing methods beyond their limits. In this paper, we present two new software libraries—hydra-zen and...

READ MORE

Gait instability and estimated core temperature predict exertional heat stroke

Summary

Objective Exertional heat stroke (EHS), characterised by a high core body temperature (Tcr) and central nervous system (CNS) dysfunction, is a concern for athletes, workers and military personnel who must train and perform in hot environments. The objective of this study was to determine whether algorithms that estimate Tcr from heart rate and gait instability from a trunk-worn sensor system can forward predict EHS onset. Methods Heart rate and three-axis accelerometry data were collected from chest-worn sensors from 1806 US military personnel participating in timed 4/5-mile runs, and loaded marches of 7 and 12 miles; in total, 3422 high EHS-risk training datasets were available for analysis. Six soldiers were diagnosed with heat stroke and all had rectal temperatures of >41°C when first measured and were exhibiting CNS dysfunction. Estimated core temperature (ECTemp) was computed from sequential measures of heart rate. Gait instability was computed from three-axis accelerometry using features of pattern dispersion and autocorrelation. Results The six soldiers who experienced heat stroke were among the hottest compared with the other soldiers in the respective training events with ECTemps ranging from 39.2°C to 40.8°C. Combining ECTemp and gait instability measures successfully identified all six EHS casualties at least 3.5 min in advance of collapse while falsely identifying 6.1% (209 total false positives) examples where exertional heat illness symptoms were neither observed nor reported. No false-negative cases were noted. Conclusion The combination of two algorithms that estimate Tcr and ataxic gate appears promising for real-time alerting of impending EHS.
READ LESS

Summary

Objective Exertional heat stroke (EHS), characterised by a high core body temperature (Tcr) and central nervous system (CNS) dysfunction, is a concern for athletes, workers and military personnel who must train and perform in hot environments. The objective of this study was to determine whether algorithms that estimate Tcr from...

READ MORE

Alternative cue and response modalities maintain the Simon effect but impact task performance

Published in:
Appl. Ergon., Vol. 100, 2022, 103648.

Summary

Inhibitory control, the ability to inhibit impulsive responses and irrelevant stimuli, enables high level functioning and activities of daily living. The Simon task probes inhibition using interfering stimuli, i.e., cues spatially presented on the opposite side of the indicated response; incongruent response times (RT) are slower than congruent RTs. Operational applicability of the Simon task beyond finger/hand manipulations and visual/auditory cues is unclear, but important to consider as new technologies provide tactile cues and require motor responses from the lower extremity (e.g., exoskeletons). In this study, twenty participants completed the Simon task under four conditions, each combination of two cue (visual/tactile) and response (upper/lower-extremity) modalities. RT were significantly longer for incongruent than congruent cues across cue-response pairs. However, alternative cue-response pairs yielded slower RT and decreased accuracy for tactile cues and lower extremity responses. Results support operational usage of the Simon task to probe inhibition using tactile cues and lower-extremity responses relevant for new technologies like exoskeletons and immersive environments.
READ LESS

Summary

Inhibitory control, the ability to inhibit impulsive responses and irrelevant stimuli, enables high level functioning and activities of daily living. The Simon task probes inhibition using interfering stimuli, i.e., cues spatially presented on the opposite side of the indicated response; incongruent response times (RT) are slower than congruent RTs. Operational...

READ MORE

Radar-optimized wind turbine siting

Author:
Published in:
IEEE Trans. Sustain. Energy, Vol. 13, No. 1, January 2022, pp. 403-13.

Summary

A method for analyzing wind turbine-radar interference is presented. A model is used to derive layouts for siting wind turbines that reduces their impact on radar systems, potentially allowing for increased wind turbine development near radar sites. By choosing a specific wind turbine grid stagger based on a wind farm's orientation relative to a radar site, the impacts on that radar can be minimized. The proposed changes to wind farm siting are relatively minor and do not have a significant effect on wind turbine density. With proper optimization of radar clutter mitigation, radar tracking performance above such wind farms can be significantly increased. Both present-day and potential future or upgraded radar systems are analyzed. The reduction in radar performance due to wind turbine clutter is approximately halved using this method. The developed method is robust with respect to controlled variations in wind turbine placement caused by potential obstructions.
READ LESS

Summary

A method for analyzing wind turbine-radar interference is presented. A model is used to derive layouts for siting wind turbines that reduces their impact on radar systems, potentially allowing for increased wind turbine development near radar sites. By choosing a specific wind turbine grid stagger based on a wind farm's...

READ MORE

Individuals differ in muscle activation patterns during early adaptation to a powered ankle exoskeleton

Published in:
Applied Ergonomics Volume 98, January 2022, 103593

Summary

Exoskeletons have the potential to assist users and augment physical ability. To achieve these goals across users, individual variation in muscle activation patterns when using an exoskeleton need to be evaluated. This study examined individual muscle activation patterns during walking with a powered ankle exoskeleton. 60% of the participants were observed to reduce medial gastrocnemius activation with exoskeleton powered and increase with the exoskeleton unpowered during stance. 80% of the participants showed a significant increase in tibialis anterior activation upon power addition, with inconsistent changes upon power removal during swing. 60% of the participants that were able to adapt to the system, did not de-adapt after 5 min. Muscle activity patterns differ between individuals in response to the exoskeleton power state, and affected the antagonist muscle behavior during this early adaptation. It is important to understand these different individual behaviors to inform the design of exoskeleton controllers and training protocols.
READ LESS

Summary

Exoskeletons have the potential to assist users and augment physical ability. To achieve these goals across users, individual variation in muscle activation patterns when using an exoskeleton need to be evaluated. This study examined individual muscle activation patterns during walking with a powered ankle exoskeleton. 60% of the participants were...

READ MORE

AI-enabled, ultrasound-guided handheld robotic device for femoral vascular access

Summary

Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions. However, central access is normally performed by highly experienced critical care physicians in a hospital setting. We developed a handheld AI-enabled interventional device, AI-GUIDE (Artificial Intelligence Guided Ultrasound Interventional Device), capable of directing users with no ultrasound or interventional expertise to catheterize a deep blood vessel, with an initial focus on the femoral vein. AI-GUIDE integrates with widely available commercial portable ultrasound systems and guides a user in ultrasound probe localization, venous puncture-point localization, and needle insertion. The system performs vascular puncture robotically and incorporates a preloaded guidewire to facilitate the Seldinger technique of catheter insertion. Results from tissue-mimicking phantom and porcine studies under normotensive and hypotensive conditions provide evidence of the technique's robustness, with key performance metrics in a live porcine model including: a mean time to acquire femoral vein insertion point of 53 plus or minus 36 s (5 users with varying experience, in 20 trials), a total time to insert catheter of 80 plus or minus 30 s (1 user, in 6 trials), and a mean number of 1.1 (normotensive, 39 trials) and 1.3 (hypotensive, 55 trials) needle insertion attempts (1 user). These performance metrics in a porcine model are consistent with those for experienced medical providers performing central vascular access on humans in a hospital.
READ LESS

Summary

Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions...

READ MORE

Adapting deep learning models to new meteorological contexts using transfer learning

Published in:
2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 4169-4177, doi: 10.1109/BigData52589.2021.9671451.

Summary

Meteorological applications such as precipitation nowcasting, synthetic radar generation, statistical downscaling and others have benefited from deep learning (DL) approaches, however several challenges remain for widespread adaptation of these complex models in operational systems. One of these challenges is adequate generalizability; deep learning models trained from datasets collected in specific contexts should not be expected to perform as well when applied to different contexts required by large operational systems. One obvious mitigation for this is to collect massive amounts of training data that cover all expected meteorological contexts, however this is not only costly and difficult to manage, but is also not possible in many parts of the globe where certain sensing platforms are sparse. In this paper, we describe an application of transfer learning to perform domain transfer for deep learning models. We demonstrate a transfer learning algorithm called weight superposition to adapt a Convolutional Neural Network trained in a source context to a new target context. Weight superposition is a method for storing multiple models within a single set of parameters thus greatly simplifying model maintenance and training. This approach also addresses the issue of catastrophic forgetting where a model, once adapted to a new context, performs poorly in the original context. We apply weight superposition to the problem of synthetic weather radar generation and show that in scenarios where the target context has less data, a model adapted with weight superposition is better at maintaining performance when compared to simpler methods. Conversely, the simple adapted model performs better on the source context when the source and target contexts have comparable amounts of data.
READ LESS

Summary

Meteorological applications such as precipitation nowcasting, synthetic radar generation, statistical downscaling and others have benefited from deep learning (DL) approaches, however several challenges remain for widespread adaptation of these complex models in operational systems. One of these challenges is adequate generalizability; deep learning models trained from datasets collected in specific...

READ MORE

Keeping Safe Rust safe with Galeed

Published in:
Annual Computer Security Applications Conf., ACSAC, December 2021, pp. 824-36.

Summary

Rust is a programming language that simultaneously offers high performance and strong security guarantees. Safe Rust (i.e., Rust code that does not use the unsafe keyword) is memory and type safe. However, these guarantees are violated when safe Rust interacts with unsafe code, most notably code written in other programming languages, including in legacy C/C++ applications that are incrementally deploying Rust. This is a significant problem as major applications such as Firefox, Chrome, AWS, Windows, and Linux have either deployed Rust or are exploring doing so. It is important to emphasize that unsafe code is not only unsafe itself, but also it breaks the safety guarantees of ‘safe’ Rust; e.g., a dangling pointer in a linked C/C++ library can access and overwrite memory allocated to Rust even when the Rust code is fully safe. This paper presents Galeed, a technique to keep safe Rust safe from interference from unsafe code. Galeed has two components: a runtime defense to prevent unintended interactions between safe Rust and unsafe code and a sanitizer to secure intended interactions. The runtime component works by isolating Rust’s heap from any external access and is enforced using Intel Memory Protection Key (MPK) technology. The sanitizer uses a smart data structure that we call pseudo-pointer along with automated code transformation to avoid passing raw pointers across safe/unsafe boundaries during intended interactions (e.g., when Rust and C++ code exchange data). We implement and evaluate the effectiveness and performance of Galeed via micro- and macro-benchmarking, and use it to secure a widely used component of Firefox.
READ LESS

Summary

Rust is a programming language that simultaneously offers high performance and strong security guarantees. Safe Rust (i.e., Rust code that does not use the unsafe keyword) is memory and type safe. However, these guarantees are violated when safe Rust interacts with unsafe code, most notably code written in other programming...

READ MORE