We present a condensed description of the joint effort of JHUCLSP/HLTCOE and MIT-LL for NIST SRE20. NIST SRE20 CTS consisted of multilingual conversational telephone speech. The set of languages included in the evaluation was not provided, encouraging the participants to develop systems robust to any language. We evaluated x-vector architectures based on ResNet, squeeze-excitation ResNets, Transformers and EfficientNets. Though squeeze-excitation ResNets and EfficientNets provide superior performance in in-domain tasks like VoxCeleb, regular ResNet34 was more robust in the challenge scenario. On the contrary, squeeze-excitation networks over-fitted to the training data, mostly in English. We also proposed a novel PLDA mixture and k-NN PLDA back-ends to handle the multilingual trials. The former clusters the x-vector space expecting that each cluster will correspond to a language family. The latter trains a PLDA model adapted to each enrollment speaker using the nearest speakers–i.e., those with similar language/channel. The k-NN back-end improved Act. Cprimary (Cp) by 68% in SRE16-19 and 22% in SRE20 Progress w.r.t. a single adapted PLDA back-end. Our best single system achieved Act. Cp=0.110 in SRE20 progress. Meanwhile, our best fusion obtained Act. Cp=0.110 in the progress–8% better than single– and Cp=0.087 in the eval set.