Publications

Refine Results

(Filters Applied) Clear All

Microbubble contrast agents improve detection of active hemorrhage

Published in:
IEEE Open Journal of Engineering in Medicine and Biology, doi: 10.1109/OJEMB.2024.3414974

Summary

Assessment of trauma-induced hemorrhage with ultrasound is particularly challenging outside of the clinic, where its detection is crucial. The current clinical standard for hematoma detection – the focused assessment with sonography of trauma (FAST) exam – does not aim to detect ongoing blood loss, and thus is unable to detect injuries of increasing severity. To enhance detection of active bleeding, we propose the use of ultrasound contrast agents (UCAs), together with a novel flow phantom and contrast-sensitive processing techniques, to facilitate efficient, practical characterization of internal bleeding. Within a the custom phantom, UCAs and processing techniques enabled a significant enhancement of the hemorrhage visualization (mean increase in generalized contrast-to-noise ratio of 17 %) compared to the contrast-free case over a range of flow rates up to 40 ml/min. Moreover, we have shown that the use of UCAs improves the probability of detection: the area under the receiver operating characteristic curve for a flow rate of 40 ml/min was 0.99, compared to 0.72 without contrast. We also demonstrate how additional processing of the spatial and temporal information further localizes the bleeding site. UCAs also enhanced Doppler signals over the non-contrast case. These results show that specialized nonlinear processing (NLP) pipelines together with UCAs may offer an efficient means to improve substantially the detection of slower hemorrhages and increase survival rates for trauma-induced injury in pre-hospital settings.
READ LESS

Summary

Assessment of trauma-induced hemorrhage with ultrasound is particularly challenging outside of the clinic, where its detection is crucial. The current clinical standard for hematoma detection – the focused assessment with sonography of trauma (FAST) exam – does not aim to detect ongoing blood loss, and thus is unable to detect...

READ MORE

Individualized ultrasound-guided intervention phantom development, fabrication, and proof of concept

Published in:
45th Annual Intl. Conf. of the IEEE Engineering in Medicine and Biology Society, EMBC, 24-27 July 2023.

Summary

Commercial ultrasound vascular phantoms lack the anatomic diversity required for robust pre-clinical interventional device testing. We fabricated individualized phantoms to test an artificial intelligence enabled ultrasound-guided surgical robotic system (AI-GUIDE) which allows novices to cannulate deep vessels. After segmenting vessels on computed tomography scans, vessel cores, bony anatomy, and a mold tailored to the skin contour were 3D-printed. Vessel cores were coated in silicone, surrounded in tissue-mimicking gel tailored for ultrasound and needle insertion, and dissolved with water. One upper arm and four inguinal phantoms were constructed. Operators used AI-GUIDE to deploy needles into phantom vessels. Two groin phantoms were tested due to imaging artifacts in the other two phantoms. Six operators (medical experience: none, 3; 1-5 years, 2; 5+ years, 1) inserted 27 inguinal needles with 81% (22/27) success in a median of 48 seconds. Seven operators performed 24 arm injections, without tuning the AI for arm anatomy, with 71% (17/24) success. After excluding failures due to motor malfunction and a defective needle, success rate was 100% (22/22) in the groin and 85% (17/20) in the arm. Individualized 3D-printed phantoms permit testing of surgical robotics across a large number of operators and different anatomic sites. AI-GUIDE operators rapidly and reliably inserted a needle into target vessels in the upper arm and groin, even without prior medical training. Virtual device trials in individualized 3-D printed phantoms may improve rigor of results and expedite translation.
READ LESS

Summary

Commercial ultrasound vascular phantoms lack the anatomic diversity required for robust pre-clinical interventional device testing. We fabricated individualized phantoms to test an artificial intelligence enabled ultrasound-guided surgical robotic system (AI-GUIDE) which allows novices to cannulate deep vessels. After segmenting vessels on computed tomography scans, vessel cores, bony anatomy, and a...

READ MORE

Development of 3D-Printed Individualized Vascular Phantoms for Artificial Intelligence (AI) Enabled Interventional Device Testing

Summary

We developed vascular phantoms mapped from human subjects to test AI-enabled ultrasound-guided vascular cannulation. Translational device prototyping necessitates anatomically accurate models. Commercial phantoms fail to address anatomic variability. Uniformity leads to optimistic AI model and operator performance. Individualized 3D-printed vascular phantoms yield anatomically correct models optimized for AI-device testing.
READ LESS

Summary

We developed vascular phantoms mapped from human subjects to test AI-enabled ultrasound-guided vascular cannulation. Translational device prototyping necessitates anatomically accurate models. Commercial phantoms fail to address anatomic variability. Uniformity leads to optimistic AI model and operator performance. Individualized 3D-printed vascular phantoms yield anatomically correct models optimized for AI-device testing.

READ MORE

Showing Results

1-3 of 3