Operational assessment of keyword search on oral history
May 23, 2016
Conference Paper
Author:
Published in:
10th Language Resources and Evaluation Conf., LREC 2016, 23-8 May 2016.
R&D Area:
Summary
This project assesses the resources necessary to make oral history searchable by means of automatic speech recognition (ASR). There are many inherent challenges in applying ASR to conversational speech: smaller training set sizes and varying demographics, among others. We assess the impact of dataset size, word error rate and term-weighted value on human search capability through an information retrieval task on Mechanical Turk. We use English oral history data collected by StoryCorps, a national organization that provides all people with the opportunity to record, share and preserve their stories, and control for a variety of demographics including age, gender, birthplace, and dialect on four different training set sizes. We show comparable search performance using a standard speech recognition system as with hand-transcribed data, which is promising for increased accessibility of conversational speech and oral history archives.