Summary
We describe an approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. Any signal can be written as the product of an AM component and an FM component. There have been several approaches to solving the AM-FM estimation problem described in the literature. Popular methods include the use of time-frequency analysis, the Hilbert transform, and the Teager energy operator. We focus on an approach based on FM-to-AM transduction that is motivated by auditory physiology. We show that the transduction approach can be realized as a bank of bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of robust AM-FM estimation in noisy environments and over a broad range of filter bandwidths and locations. Our model is consistent with recent psychophysical experiments that indicate AM and FM components of acoustic signals may be transformed into a common neural code in the brain stem via FM-to-AM transduction. Applications of our model include signal recognition and multi-component decomposition.