National Airspace System (NAS) is a complex and evolving system that enables safe and efficient aviation. Advanced air mobility concepts and new airspace entrants, such as unmanned aircraft, must integrate into the NAS without degrading overall safety or efficiency. For instance, regulations, standards, and systems are required to mitigate the risk of a midair collision between aircraft. Monte Carlo simulations have been a foundational capability for decades to develop, assess, and certify aircraft conflict avoidance systems. These are often validated through human-in-the-loop experiments and flight testing. For example, an update to the Traffic Collision Avoidance System (TCAS) mandated for manned aircraft was validated in part using this approach [1]. For many aviation safety studies, manned aircraft behavior is represented using the MIT Lincoln Laboratory statistical encounter models [2–5]. The original models [2–4] were developed from 2008 to 2013 to support safety simulations for altitudes above 500 feet above ground level (AGL). However, these models were not sufficient to assess the safety of smaller unmanned aerial systems (UAS) operations below 500 feet AGL and fully support the ASTM F38 and RTCA SC-147 standards efforts. In response, newer models [5–7] with altitude floors below 500 feet AGL have been in development since 2018. Many of the models assume that aircraft behavior is uncorrelated and not dependent on air traffic services or nearby aircraft. The models were trained using observations of cooperative aircraft equipped with transponders, but data sources and assumptions vary. The newer models are organized by aircraft types of fixed-wing multi-engine, fixed-wing single engine, and rotorcraft, whereas the original models do not consider aircraft type. Our research objective was to compare the various uncorrelated models of conventional aircraft and identify how the models differ. Particularly if models of rotorcraft were sufficiently different from models of fixed-wing aircraft to require type-specific models. The scope of this work was limited to altitudes below 5000 feet AGL, the expected altitude ceiling for many new airspace entrants. The scope was also informed by the Federal Aviation Administration (FAA) UAS Integration Office and Alliance for System Safety of UAS through Research Excellence (ASSURE). The primary contribution is guidance on which uncorrelated models to leverage when evaluating the performance of a collision avoidance system designed for low-altitude operations, such as prescribed by the ASTM F3442 detect and avoid standard for smaller UAS [8]. We also address which models can be surrogates for non-cooperative aircraft without transponders. All models and software used are publicly available under open source licenses [9].