Summary
The authors have developed an atomic-force-microscopy-based technique to measure intrinsic material roughness after base development. This method involves performing an interrupted development of the resist film and measuring the resulting film roughness after a certain fixed film loss. Employing this technique, the authors previously established that the photoacid generator (PAG) is a major material contributor of film roughness and that PAG segregation in the resist is likely responsible for nanoscale dissolution inhomogeneities. The additional roughness imparted on a test polymer by incorporation of a series of iodonium, sulfonium, diazo, and imido PAGs was measured. The roughness was then correlated to the inhibition properties of the various PAGs. This was accomplished both through a NMR technique that measures interaction of the PAG with the polymer and by evaluating the dissolution inhibition properties of the PAG through a percolation model. Several PAGs that result in significantly lower material roughness and thus the potential for significantly reduced linewidth roughness in resist imaging have been identified.