Publications
Nearfield anechoic chamber and farfield on-site antenna calibration pattern comparison of an S-band planar phased array radar
Summary
Summary
The Advanced Technology Demonstrator (ATD) is an active, S-band, dual-polarization phased array radar developed for weather sensing. The ATD is an active electronically scanned array (AESA) with a 4-m aperture comprised of 4,864 individual transmit/receive (T/R) modules. The antenna was calibrated at the element, subarray, and array levels. Calibration, validation...
Effect of a wet spherical radome on the reflected power for an S-band planar phased array radar antenna
Summary
Summary
An active S-band dual-polarized multifunction phased array radar (MPAR), the Advanced Technology Demonstrator (ATD), has recently been developed for weather sensing and aircraft surveillance. The ATD is an active electronically scanned array (AESA) with 4864 transmit/receive (T/R) modules and was installed in a spherical radome. Simulations and a novel phased...
Multilayer microhydraulic actuators with speed and force configurations
Summary
Summary
Electrostatic motors have traditionally required high voltage and provided low torque, leaving them with a vanishingly small portion of the motor application space. The lack of robust electrostatic motors is of particular concern in microsystems because inductive motors do not scale well to small dimensions. Often, microsystem designers have to...
Operation of an optical atomic clock with a Brillouin laser subsystem
Summary
Summary
Microwave atomic clocks have traditionally served as the 'gold standard' for precision measurements of time and frequency. However, over the past decade, optical atomic clocks have surpassed the precision of their microwave counterparts by two orders of magnitude or more. Extant optical clocks occupy volumes of more than one cubic...
Antennas and RF components designed with graded index composite materials
Summary
Summary
Antennas and RF components in general, can greatly benefit with the recent development of low-loss 3D print graded index materials. The additional degrees of freedom provided by graded index materials can result in the design of antennas and other RF components with superior performance than currently available designs based on...
Analog coupled oscillator based weighted Ising machine
Summary
Summary
We report on an analog computing system with coupled non-linear oscillators which is capable of solving complex combinatorial optimization problems using the weighted Ising model. The circuit is composed of a fully-connected 4-node LC oscillator network with low-cost electronic components and compatible with traditional integrated circuit technologies. We present the...
Design, simulation, and fabrication of three-dimensional microsystem components using grayscale photolithography
Summary
Summary
Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss...
Chip-scale molecular clock
Summary
Summary
An ultra-stable time-keeping device is presented, which locks its output clock frequency to the rotational-mode transition of polar gaseous molecules. Based on a high-precision spectrometer in the sub-terahertz (THz) range, our new clocking scheme realizes not only fully electronic operation but also implementations using mainstream CMOS technology. Meanwhile, the small...
Linear and rotational microhydraulic actuators driven by electrowetting
Summary
Summary
Microhydraulic actuators offer a new way to convert electrical power to mechanical power on a microscale with an unmatched combination of power density and efficiency. Actuators work by combining surface tension force contributions from a large number of droplets distorted by electrowetting electrodes. This paper reports on the behavior of...
Valleytronics: opportunities, challenges, and paths forward
Summary
Summary
A lack of inversion symmetry coupled with the presence of time-reversal symmetry endows 2D transition metal dichalcogenides with individually addressable valleys in momentum space at the K and K' points in the first Brillouin zone. This valley addressability opens up the possibility of using the momentum state of electrons, holes...