Publications

Refine Results

(Filters Applied) Clear All

Design, simulation, and fabrication of three-dimensional microsystem components using grayscale photolithography

Summary

Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss the use of PROLITH, a lithography simulation tool, to predict 3-D photoresist profiles from grayscale mask designs. Several examples of optical microsystems and microelectromechanical systems where PROLITH was used to validate the mask design prior to implementation in the microfabrication process are presented. In all examples, PROLITH was able to accurately and quantitatively predict resist profiles, which reduced both design time and the number of trial photomasks, effectively reducing the cost of component fabrication.
READ LESS

Summary

Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss...

READ MORE

Fluidic microoptics with adjustable focusing and beam steering for single cell optogenetics

Published in:
Opt. Express, Vol. 25, No. 14, 10 July 2017, pp. 16825-16839.

Summary

Electrically controlled micron-scale liquid lenses have been designed, fabricated and demonstrated, that provide both adjustable focusing and beam steering, with the goal of applying them to optogenetic in vivo mapping of brain activity with single cell resolution. The liquid lens is formed by the interface between two immiscible liquids which are contained in a conically tapered lens cavity etched into a fused silica substrate. Interdigitated electrodes have been patterned along the sidewall of the taper to control the liquid lens curvature and tilt. Microlenses with apertures ranging in size from 30 to 80 μm were fabricated and tunable focusing ranging from 0.25 to 3 mm and beam steering of ± 1 degree have been demonstrated.
READ LESS

Summary

Electrically controlled micron-scale liquid lenses have been designed, fabricated and demonstrated, that provide both adjustable focusing and beam steering, with the goal of applying them to optogenetic in vivo mapping of brain activity with single cell resolution. The liquid lens is formed by the interface between two immiscible liquids which...

READ MORE

Strong effect of azodye layer thickness on RM-stabilized photoalignment

Published in:
SID Symp. Digest of Tech. Papers, Vol. 48, No. 1, May 2017, pp. 578-81.

Summary

We have previously proposed a process for stabilizing azodye photo-alignment layers using a surface localized reactive mesogen (RM) layer applied by dissolving the monomer in a liquid crystal prior to filling the cell. Surprisingly, thin azodye layers (~3 nm) exhibit improved stability upon exposure to polarized light compared to thicker layers (~40 nm).
READ LESS

Summary

We have previously proposed a process for stabilizing azodye photo-alignment layers using a surface localized reactive mesogen (RM) layer applied by dissolving the monomer in a liquid crystal prior to filling the cell. Surprisingly, thin azodye layers (~3 nm) exhibit improved stability upon exposure to polarized light compared to thicker...

READ MORE

High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design

Summary

We have previously shown through simulation that an optical beam deflector based on the Pancharatnam (geometric) phase can provide high efficiency with up to 80° deflection using a dual-twist structure for polarization-state control [Appl. Opt. 54, 10035 (2015)]. In this report, we demonstrate that its optical performance is as predicted and far beyond what could be expected for a conventional diffractive optical device. We provide details about construction and characterization of a ± 40° beam-steering device with 90% diffraction efficiency based on our dual-twist design at a 633nm wavelength.
READ LESS

Summary

We have previously shown through simulation that an optical beam deflector based on the Pancharatnam (geometric) phase can provide high efficiency with up to 80° deflection using a dual-twist structure for polarization-state control [Appl. Opt. 54, 10035 (2015)]. In this report, we demonstrate that its optical performance is as predicted...

READ MORE

Effects of humidity and surface on photoalignment of brilliant yellow

Summary

Controlling and optimising the alignment of liquid crystals is a crucial process for display application. Here, we investigate the effects of humidity and surface types on photoalignment of an azo-dye brilliant yellow (BY). Specifically, the effect of humidity on the photoalignment of BY was studied at the stage of substrate storage before coating, during the spin-coating process, between film coating and exposure, and after exposure. Surprising results are the drastic effect of humidity during the spin-coating process, the humidity annealing to increase the order of the BY layer after exposure and the dry annealing to stabilise the layer. Our results are interpreted in terms of the effect of water on the aggregation of BY. The type of surface studied had minimal effects. Thin BY films (about 3 nm thickness) were sensitive to the hydrophilicity of the surface while thick BY films (about 30 nm thickness) were not affected by changing the surface. The results of this paper allow for the optimisation of the BY photoalignment for liquid crystal display application as well as a better understanding of the BY photoalignment mechanism.
READ LESS

Summary

Controlling and optimising the alignment of liquid crystals is a crucial process for display application. Here, we investigate the effects of humidity and surface types on photoalignment of an azo-dye brilliant yellow (BY). Specifically, the effect of humidity on the photoalignment of BY was studied at the stage of substrate...

READ MORE

Liquid crystal uncooled thermal imager development

Published in:
SPIE, Vol. 9974, Infrared Sensors, Devices, and Applications VI, 28 August 2016.

Summary

An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable to large formats (tens of megapixels) while maintaining or improving the noise equivalent temperature difference (NETD) compared to microbolometers. The present work is demonstrating that the LCs have the required performance (sensitivity, dynamic range, speed, etc.) to enable a more flexible uncooled imager. Utilizing 200-mm wafers, a process has been developed and arrays have been fabricated using aligned LCs confined in 20-20-um cavities elevated on thermal legs. Detectors have been successfully fabricated on both silicon and fused silica wafers using less than 10 photolithographic mask steps. A breadboard camera system has been assembled to test the imagers. Various sensor configurations are described along with advantages and disadvantages of component arrangements.
READ LESS

Summary

An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable...

READ MORE

A scalable fabrication process for liquid crystal-based uncooled thermal imagers

Published in:
J. Microelectromech. Syst., Vol. 25, No. 3. June 2016, pp. 479-88.

Summary

A novel sensor is being developed for a new uncooled imager technology that is scalable to large formats (tens of megapixels), which is greater than what is achieved by commercial microbolometer arrays. In this novel sensor, a liquid-crystal transducer is used to change a long-wavelength infrared scene into a visible image that can be detected using a conventional visible imager. This approach has the potential for making a more flexible thermal sensor that can be optimized for a variety of applications. In this paper, we describe the microfabrication processes required to create an array of sealed thermally isolated micro-cavities filled with liquid crystals to be used for an uncooled thermal imager. Experimental results from the fabricated arrays will also be discussed.
READ LESS

Summary

A novel sensor is being developed for a new uncooled imager technology that is scalable to large formats (tens of megapixels), which is greater than what is achieved by commercial microbolometer arrays. In this novel sensor, a liquid-crystal transducer is used to change a long-wavelength infrared scene into a visible...

READ MORE

Microhydraulic electrowetting actuators

Published in:
J. Microelectromech. Syst., Vol. 25, No. 2, April 2016, pp. 394-400.

Summary

The conversion of electrical to mechanical power on a sub-centimeter scale is a key technology in many microsystems and energy harvesting devices. In this paper, we present a type of a capacitive energy conversion device that uses capillary pressure and electrowetting to reversibly convert electrical power to hydraulic power. These microhydraulic actuators use a high surface-to-volume ratio to deliver high power at a relatively low voltage with an energy conversion efficiency of over 65%. The capillary pressure generated grows linearly with shrinking capillary diameter, as does the frequency of actuation. We present the pressure, frequency, and power scaling properties of these actuators and demonstrate that power density scales up as the inverse capillary diameter squared, leading to high-efficiency actuators with a strength density exceeding biological muscle. Two potential applications for microhydraulics are also demonstrated: soft-microrobotics and energy harvesting.
READ LESS

Summary

The conversion of electrical to mechanical power on a sub-centimeter scale is a key technology in many microsystems and energy harvesting devices. In this paper, we present a type of a capacitive energy conversion device that uses capillary pressure and electrowetting to reversibly convert electrical power to hydraulic power. These...

READ MORE

Versatile alignment layer method for new types of liquid crystal photonic devices

Summary

Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research on such alignment layers has shown that they have limited stability, particularly against subsequent light exposure. As such, we further describe a method of utilizing a pre-polymer, infused into the microcavity along with the liquid crystal, to provide photostability. We demonstrate that the polymer layer, formed under ultraviolet irradiation of liquid crystal cells, has been effectively localized to a thin region near the substrate surface and provides a significant improvement in the photostability of the liquid crystal alignment. This versatile alignment layer method, capable of being utilized in devices from the described microcavities to displays, offers significant promise for new photonics applications.
READ LESS

Summary

Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research...

READ MORE

Liquid crystal uncooled thermal imager development

Published in:
2014 Military Sensing Symposia, (MSS 2014), Detectors and Materials, 9 September 2014.

Summary

An uncooled thermal imager is being developed based on a liquid crystal transducer. The liquid crystal transducer changes a long-wavelength infrared scene into a visible image as opposed to an electric signal in microbolometers. This approach has the potential for making a more flexible thermal sensor. One objective is to develop imager technology scalable to large formats (tens of megapixels) while maintaining or improving the noise equivalent temperature difference (NETD) compared to microbolometers. Our work is demonstrating that the liquid crystals have the required performance (sensitivity, dynamic range, speed, etc.) to make state-of-the-art uncooled imagers. A process has been developed and arrays have been fabricated using the liquid crystals. A breadboard camera system has been assembled to test the imagers. Results of the measurements are discussed.
READ LESS

Summary

An uncooled thermal imager is being developed based on a liquid crystal transducer. The liquid crystal transducer changes a long-wavelength infrared scene into a visible image as opposed to an electric signal in microbolometers. This approach has the potential for making a more flexible thermal sensor. One objective is to...

READ MORE

Showing Results

1-10 of 20