Publications
Design, simulation, and fabrication of three-dimensional microsystem components using grayscale photolithography
Summary
Summary
Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss...
Valleytronics: opportunities, challenges, and paths forward
Summary
Summary
A lack of inversion symmetry coupled with the presence of time-reversal symmetry endows 2D transition metal dichalcogenides with individually addressable valleys in momentum space at the K and K' points in the first Brillouin zone. This valley addressability opens up the possibility of using the momentum state of electrons, holes...
Optical Nondestructive Dynamic Measurements of Wafer-Scale Encapsulated Nanofluidic Channels
Summary
Summary
Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed...
Fluidic microoptics with adjustable focusing and beam steering for single cell optogenetics
Summary
Summary
Electrically controlled micron-scale liquid lenses have been designed, fabricated and demonstrated, that provide both adjustable focusing and beam steering, with the goal of applying them to optogenetic in vivo mapping of brain activity with single cell resolution. The liquid lens is formed by the interface between two immiscible liquids which...
Seismic barrier protection of critical infrastructure
Summary
Summary
Each year, on average a major magnitude-8 earthquake strikes somewhere in the world. In addition, 10,000 earthquake related deaths occur annually, where collapsing buildings claim by far most lives. Moreover, in recent events, industry activity of oil extraction and wastewater reinjection are suspected to cause earthquake swarms that threaten high-value...
High-resolution, high-throughput, CMOS-compatible electron beam patterning
Summary
Summary
Two scanning electron beam lithography (SEBL) patterning processes have been developed, one positive and one negative tone. The processes feature nanometer-scale resolution, chemical amplification for faster throughput, long film life under vacuum, and sufficient etch resistance to enable patterning of a variety of materials with a metal-free (CMOS/MEMS compatible) tool...
Electrically switchable diffractive waveplates with metasurface aligned liquid crystals
Summary
Summary
Diffractive waveplates and equivalent metasurfaces provide a promising path for applications in thin film beam steering, tunable lenses, and polarization filters. However, fixed metasurfaces alone are unable to be tuned electronically. By combining metasurfaces with tunable liquid crystals, we experimentally demonstrate a single layer device capable of electrically switching a...
Broadband Optical Switch Based on Liquid Crystal Dynamic Scattering
Summary
Summary
This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over...
Wafer-scale aluminum nanoplasmonic resonators with optimized metal deposition
Summary
Summary
Spectroscopic ellipsometry is demonstrated to be an effective technique for assessing the quality of plasmonic resonances within aluminum nanostructures deposited with multiple techniques. The resonance quality of nanoplasmonic aluminum arrays is shown to be strongly dependent on the method of aluminum deposition. Three-layer metal-dielectric-metal nanopillar arrays were fabricated in a...
Nanochannel fabrication based on double patterning with hydrogen silsesquioxane
Summary
Summary
A double patterning process is presented to pattern sub-35 nm wide channels in hydrogen silsesquioxane with near 100% pattern densities. Using aligned electron beam lithography, each side of the nanochannel structure is patterned as a separate layer. A 50000 uC/cm^2 high-dose anneal is applied to the first layer after exposure...