Publications

Refine Results

(Filters Applied) Clear All

Optical Nondestructive Dynamic Measurements of Wafer-Scale Encapsulated Nanofluidic Channels

Published in:
Applied Optics, vol. 57, no. 15

Summary

Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed or embedded channels without cleaving the sample. Here, we demonstrate a novel method for accurately extracting nanochannel cross-sectional dimensions and monitoring fluid filling, utilizing spectroscopic ellipsometric scatterometry, combined with rigorous electromagnetic simulations. Our technique is capable of measuring channel dimensions with better than 5-nm accuracy and assessing channel filling within seconds. The developed technique is, thus, well suited for both process monitoring of channel fabrication as well as for studying complex phenomena of fluid flow through nanochannel structures.
READ LESS

Summary

Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed...

READ MORE

Re-engineering Artificial Muscle with Microhydraulics

Published in:
Nature Microsystems & Nanoengineering, vol. 3

Summary

We introduce a new type of actuator, the microhydraulic stepping actuator (MSA), which borrows design and operational concepts from biological muscle and stepper motors. MSAs offer a unique combination of power, efficiency, and scalability not easily achievable on the microscale. The actuator works by integrating surface tension forces produced by electrowetting acting on scaled droplets along the length of a thin ribbon. Like muscle, MSAs have liquid and solid functional components and can displace a large
fraction of their length. The 100 μm pitch MSA presented here already has an output power density of over 200 W kg− 1, rivaling the most powerful biological muscles, due to the scaling of surface tension forces, MSA’s power density grows quadratically as its dimensions are reduced.
READ LESS

Summary

We introduce a new type of actuator, the microhydraulic stepping actuator (MSA), which borrows design and operational concepts from biological muscle and stepper motors. MSAs offer a unique combination of power, efficiency, and scalability not easily achievable on the microscale. The actuator works by integrating surface tension forces produced by...

READ MORE

Showing Results

1-2 of 2