Publications

Refine Results

(Filters Applied) Clear All

Electrically switchable diffractive waveplates with metasurface aligned liquid crystals

Published in:
Opt. Express, Vol. 24, No. 21, 17 October 2016, 24265-24273.

Summary

Diffractive waveplates and equivalent metasurfaces provide a promising path for applications in thin film beam steering, tunable lenses, and polarization filters. However, fixed metasurfaces alone are unable to be tuned electronically. By combining metasurfaces with tunable liquid crystals, we experimentally demonstrate a single layer device capable of electrically switching a diffractive waveplate design at a measured peak diffraction efficiency of 35%, and a minimum switching voltage of 10V. Furthermore, the nano-scale metasurface aligned liquid crystals are largely independent of variations in wavelength and temperature. We also present a computational analysis of the efficiency limits of liquid crystal based diffractive waveplates, and compare this analysis to experimental measurements.
READ LESS

Summary

Diffractive waveplates and equivalent metasurfaces provide a promising path for applications in thin film beam steering, tunable lenses, and polarization filters. However, fixed metasurfaces alone are unable to be tuned electronically. By combining metasurfaces with tunable liquid crystals, we experimentally demonstrate a single layer device capable of electrically switching a...

READ MORE

30 to 50 ns liquid-crystal optical switches

Published in:
Optics Express, Vol. 18, No. 18, 30 August 2010, pp. 1886-18893.

Summary

The optical switching time of twisted-nematic liquid-crystal cells using the liquid crystals, 5CB (C,H,,-Ph-Ph-CN), 50CB(C,Hw O-Ph-Ph-CN) and PCH5 (C,H,,-Cy-Ph-CN) have been characterized as a function of temperature, prebias voltage and switching voltage, V. The transition time from 90 % to 10 % transmission scales as V-1.9 and is limited to 30 to 50 ns by the liquid-crystal breakdown electric field, - 100 V I'm-I The time fi-om the initial switching voltage step to 90 % transmission, delay time, decreases with increasing prebias and switching voltage. For 5CB and 50CS the delay time approaches a constant value at higher electric fields, >10 V ~1Il,-1. Both the transition and delay times decrease with increasing temperature. The minimum transition time at temperatures a few degrees below the nematicisotropic temperature are 32, 32, and 44 ns and delay times are 44, 25 and 8 ns for 5CB, 50CB, and PCH5 respectively.
READ LESS

Summary

The optical switching time of twisted-nematic liquid-crystal cells using the liquid crystals, 5CB (C,H,,-Ph-Ph-CN), 50CB(C,Hw O-Ph-Ph-CN) and PCH5 (C,H,,-Cy-Ph-CN) have been characterized as a function of temperature, prebias voltage and switching voltage, V. The transition time from 90 % to 10 % transmission scales as V-1.9 and is limited to...

READ MORE

Showing Results

1-2 of 2