Publications

Refine Results

(Filters Applied) Clear All

Coherent beam-combining of quantum cascade amplifier arrays

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.
READ LESS

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.

READ MORE

Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal plane array (DFPA) camera

Summary

We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam combining (WBC). The DFPA camera was configured to integrate the laser light relfected from the sample and to perform on-chip subtraction of the passive thermal background. A 27-frame hyperspectral image was acquired of a liquid contaminant on a diffuse gold surface at a range of 5 meters. The measured spectral reflectance closely matches the calculated reflectance. Furthermore, the high-speed capabilities of the system were demonstrated by capturing differential reflectance images of sand and KClO3 particles that were moving at speeds of up to 10 m/s.
READ LESS

Summary

We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam...

READ MORE

Impact ionization in AlxGa1-xASySb1-y avalanche photodiodes

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed APDs, which allowed for both pure electron and pure hole injection in the same device. Photo-multiplication measurements were made at temperatures ranging from 77K to 300K for all three alloys. A quasi-physical model with an explicit temperature dependence was used to express the impact ionization coefficients as a function of electric-field strength and temperature. For all three alloys, it was found that alpha < beta at any given temperature. In addition, the values of the impact ionization coefficients were found to decrease as the aluminum concentration of the AlGaAsSb alloy was increased. A value between 1.2 and 4.0 was found for beta/x, which is dependent on temperature, alloy composition, and electric-field strength.
READ LESS

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed...

READ MORE

High-voltage GaN-on-silicon Schottky diodes

Published in:
CS ManTech 2013, 13-16 May 2013.
Topic:

Summary

M/A-COM Technology Solutions has continuing joint development efforts sponsored by the Department of Energy with MIT main campus and MIT Lincoln Laboratory to develop GaN-on-silicon two and three-terminal high-voltage/high current switching devices. The initial developmental goals were for a Schottky diode that has a reverse breakdown blocking voltage of >600 volts and is capable of handling 10 amperes of forward current. A comparison of the M/A-COM Technology Solutions lateral GaN Schottky diode on-resistance as a function of reverse breakdown voltage for a number of both lateral and vertical GaN Schottky diode geometries taken from the literature is presented. The substrates employed for all of these data points are either sapphire, SiC, silicon, and even one study which utilized single crystal GaN. Also included in this plot are theoretical limits for the basic materials typically used in GaN Schottky diode construction. It can be seen that the reverse breakdown results of approximately 1500 volts for M/A/-COM Technology Solutions lateral anode connected field GaN Schottky diodes on silicon substrates compare extremely favorably with the reported performance of the state-of-the-art devices, regardless of substrate material or design geometry.
READ LESS

Summary

M/A-COM Technology Solutions has continuing joint development efforts sponsored by the Department of Energy with MIT main campus and MIT Lincoln Laboratory to develop GaN-on-silicon two and three-terminal high-voltage/high current switching devices. The initial developmental goals were for a Schottky diode that has a reverse breakdown blocking voltage of &gt;600...

READ MORE

Single-mode tapered quantum cascade lasers

Published in:
Appl. Phys. Lett., Vol. 102, No. 18, 6 May 2013.

Summary

We demonstrate tapered quantum cascade lasers monolithically integrated with a distributed Bragg reflector acting as both a wavelength-selective back mirror and a transverse mode filter. Each of the 14 devices operates at a different wavelength between 9.2 and 9.7 um, where nine devices feature single-mode operation at peak powers between 0.3 and 1.6W at room temperature. High output power and excellent beam quality with peak brightness values up to 1.6MW cm^-2 sr^-1 render these two-terminal devices highly suitable for stand-off spectroscopy applications.
READ LESS

Summary

We demonstrate tapered quantum cascade lasers monolithically integrated with a distributed Bragg reflector acting as both a wavelength-selective back mirror and a transverse mode filter. Each of the 14 devices operates at a different wavelength between 9.2 and 9.7 um, where nine devices feature single-mode operation at peak powers between...

READ MORE

High power (>5 W) lambda ~9.6 um tapered quantum cascade lasers grown by OMVPE

Summary

AlInAS/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more compressively strained SLs as the barrier/well layer thicknesses are decreased below about 10 nm. This shift is attributed to In surface segregation in both AlInAs and GaInAs. This shift is compensated for in the growth of ultra-thin layers in QCL structures. QCLs with tapered gain regions and emitting at 9.6 um are demonstrated with peak power as high as 5.3 W from one facet at 20 degrees C.
READ LESS

Summary

AlInAS/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more compressively strained SLs as the barrier/well layer thicknesses are decreased...

READ MORE

High voltage GaN-on-silicon HEMT

Published in:
Phys. Status Solidi C, Vol. 10, No. 5, May 2013, pp. 844-8.
Topic:

Summary

M/A-COM Technology Solutions has continued in the joint development efforts sponsored by the Department of Energy with MIT main campus amd MIT Lincoln Labs to develop GaN on silicon three terminal high voltage/high current HEMT switching devices. The first year developmental goals were for a three terminal structure that has a reverse breakdown characteristic of >1200 V and is capable of switching 10 amperes of current. An average three terminal breakown of 1322 V was achieved on a single finger 250 um GaN on silicon HEMT device utilizing a source connected field plate with a 4.5 um drain region overlap. An individual device breakdown on a single finger 250 um GaN on silicon HEMT device with a SCFP of >1630 V was measured at a current of 250 uA (1mA/mm) - One of the highest yet reported for GaN on silicon in the industry.
READ LESS

Summary

M/A-COM Technology Solutions has continued in the joint development efforts sponsored by the Department of Energy with MIT main campus amd MIT Lincoln Labs to develop GaN on silicon three terminal high voltage/high current HEMT switching devices. The first year developmental goals were for a three terminal structure that has...

READ MORE

High-power arrays of quantum cascade laser master-oscillator power-amplifiers

Published in:
Opt. Express, Vol. 21, No. 4, 25 February 2013, pp. 4518-4530.

Summary

We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 um. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.
READ LESS

Summary

We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 um. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays...

READ MORE

High efficiency coherent beam combining of semiconductor optical amplifiers

Published in:
Opt. Lett., Vol. 37, No. 23, 1 December 2012, pp. 5006-5008.

Summary

We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was achieved via active feedback on each amplifier's drive current to maximize the power in the combined beam. The combining efficiency at all current levels was nearly constant at 87%.
READ LESS

Summary

We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was...

READ MORE

Advanced packaging of high-power slab-coupled optical waveguide laser and amplifier arrays for coherent beam combining

Summary

Individually addressable GaAs-based 9XX-nm Slab-Coupled Optical Waveguide (SCOW) laser and amplifier arrays have been demonstrated in a modular 2-D stacked architecture. Approximately 20 W of coherently-combined power was obtained from two optically stacked amplifier modules.
READ LESS

Summary

Individually addressable GaAs-based 9XX-nm Slab-Coupled Optical Waveguide (SCOW) laser and amplifier arrays have been demonstrated in a modular 2-D stacked architecture. Approximately 20 W of coherently-combined power was obtained from two optically stacked amplifier modules.

READ MORE

Showing Results

1-10 of 13