Publications
Coherent beam-combining of quantum cascade amplifier arrays
Summary
Summary
We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.
Optical phased-array ladar
Summary
Summary
We demonstrate a ladar with 0.5 m class range resolution obtained by integrating a continuous-wave optical phased-array transmitter with a Geiger-mode avalanche photodiode receiver array. In contrast with conventional ladar systems, an array of continuous-wave sources is used to effectively pulse illuminate a target by electro-optically steering far-field fringes. From...
Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal plane array (DFPA) camera
Summary
Summary
We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam...
Single-mode tapered quantum cascade lasers
Summary
Summary
We demonstrate tapered quantum cascade lasers monolithically integrated with a distributed Bragg reflector acting as both a wavelength-selective back mirror and a transverse mode filter. Each of the 14 devices operates at a different wavelength between 9.2 and 9.7 um, where nine devices feature single-mode operation at peak powers between...
High power (>5 W) lambda ~9.6 um tapered quantum cascade lasers grown by OMVPE
Summary
Summary
AlInAS/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more compressively strained SLs as the barrier/well layer thicknesses are decreased...
High-power arrays of quantum cascade laser master-oscillator power-amplifiers
Summary
Summary
We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 um. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays...
High efficiency coherent beam combining of semiconductor optical amplifiers
Summary
Summary
We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was...
External cavity beam combining of 21 semiconductor lasers using SPGD
Summary
Summary
Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity configuration compared with...
Coherent combining of a 4 kW, eight-element fiber amplifier array
Summary
Summary
Commercial 0:5kW Yb-doped fiber amplifiers have been characterized and found to be suitable for coherent beam combining. Eight such fiber amplifiers have been coherently combined in a tiled-aperture configuration with 78% combining efficiency and total output power of 4kW. The power-in-the-bucket vertical beam quality of the combined output is 1.25...
Advanced packaging of high-power slab-coupled optical waveguide laser and amplifier arrays for coherent beam combining
Summary
Summary
Individually addressable GaAs-based 9XX-nm Slab-Coupled Optical Waveguide (SCOW) laser and amplifier arrays have been demonstrated in a modular 2-D stacked architecture. Approximately 20 W of coherently-combined power was obtained from two optically stacked amplifier modules.