Publications

Refine Results

(Filters Applied) Clear All

Analog coupled oscillator based weighted Ising machine

Summary

We report on an analog computing system with coupled non-linear oscillators which is capable of solving complex combinatorial optimization problems using the weighted Ising model. The circuit is composed of a fully-connected 4-node LC oscillator network with low-cost electronic components and compatible with traditional integrated circuit technologies. We present the theoretical modeling, experimental characterization, and statistical analysis our system, demonstrating single-run ground state accuracies of 98% on randomized MAX-CUT problem sets with binary weights and 84% with 5-bit weight resolutions. Solutions are obtained within 5 oscillator cycles, and the time-to-solution has been demonstrated to scale directly with oscillator frequency. We present scaling analysis which suggests that large coupled oscillator networks may be used to solve computationally intensive problems faster and more efficiently than conventional algorithms. The proof-of-concept system presented here provides the foundation for realizing such larger scale systems using existing hardware technologies and could pave the way towards an entirely novel computing paradigm.
READ LESS

Summary

We report on an analog computing system with coupled non-linear oscillators which is capable of solving complex combinatorial optimization problems using the weighted Ising model. The circuit is composed of a fully-connected 4-node LC oscillator network with low-cost electronic components and compatible with traditional integrated circuit technologies. We present the...

READ MORE

Key Challenges and Prospects for Optical Standoff Trace Detection of Explosives

Published in:
Trends in Analytical Chemistry, vol. 100

Summary

Sophisticated improvised explosive devices (IEDs) challenge the capabilities of current sensors, particularly in areas away from static checkpoints. This security gap could be filled by standoff chemical sensors that detect IEDs based on external trace explosive residues. Unfortunately, previous efforts have not led to widely deployed capabilities. Crucially, the physical morphology of trace explosive residues and chemical “clutter” present unique challenges to the operational performance of standoff sensors. In this review, an overview of standoff trace explosive detection systems is provided in the context of these unique challenges. Tradespace analysis is performed for two popular standoff detection methods: longwave infrared hyperspectral imaging and deep-UV Raman spectroscopy. The tradespace analysis method described in this review incorporates realistic trace explosive residues and background clutter into the technology development process. The review predicts system performance and areas where additional research is needed for these two technologies to optimize performance.
READ LESS

Summary

Sophisticated improvised explosive devices (IEDs) challenge the capabilities of current sensors, particularly in areas away from static checkpoints. This security gap could be filled by standoff chemical sensors that detect IEDs based on external trace explosive residues. Unfortunately, previous efforts have not led to widely deployed capabilities. Crucially, the physical...

READ MORE

Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering

Summary

We report a photothermal modulation of Mie scattering (PMMS) method that enables concurrent spatial and spectral discrimination of individual micron-sized particles. This approach provides a direct measurement of the "fingerprint" infrared absorption spectrum with the spatial resolution of visible light. Trace quantities (tens of picograms) of material were deposited onto an infrared transparent substrate and simultaneously illuminated by a wavelength-tunable intensity-modulated quantum cascade pump laser and a continuous-wave 532 nm probe laser. Absorption of the pump laser by the particles results in direct modulation of the scatter field of the probe laser. The probe light scattered from the interrogated region is imaged onto a visible camera, enabling simultaneous probing of spatially-separated individual particles. By tuning the wavelength of the pump laser, the IR absorption spectrum is obtained. Using this approach, we measured the infrared absorption spectra of individual 3 um PMMA and silica spheres. Experimental PMMS signal amplitudes agree with modeling using an extended version of the Mie scattering theory for particles on substrates, enabling the prediction of the PMMS signal magnitude based on the material and substrate properties.
READ LESS

Summary

We report a photothermal modulation of Mie scattering (PMMS) method that enables concurrent spatial and spectral discrimination of individual micron-sized particles. This approach provides a direct measurement of the "fingerprint" infrared absorption spectrum with the spatial resolution of visible light. Trace quantities (tens of picograms) of material were deposited onto...

READ MORE

Photothermal speckle modulation for noncontact materials characterization

Summary

We have developed a noncontact, photothermal materials characterization method based on visible-light speckle imaging. This technique is applied to remotely measure the infrared absorption spectra of materials and to discriminate materials based on their thermal conductivities. A wavelength-tunable (7.5-8.7 um), intensity-modulated, quantum cascade pump laser and a continuous-wave 532 nm probe laser illuminate a sample surface such that the two laser spots overlap. Surface absorption of the intensity-modulated pump laser induces a time-varying thermoelastic surface deformation, resulting in a time-varying 532 nm scattering speckle field from the surface. The speckle modulation amplitude, derived from a series of visible camera images, is found to correlate with the amplitude of the surface motion. By tuning the pump laser's wavelength over a molecular absorption feature, the amplitude spectrum of the speckle modulation is found to correlate to the IR absorption spectrum. As an example, we demonstrate this technique for spectroscopic identification of thin polymeric films. Furthermore, by adjusting the rate of modulation of the pump beam and measuring the associated modulation transfer to the visible speckle pattern, information about the thermal time constants of surface and sub-surface features can be revealed. Using this approach, we demonstrate the ability to distinguish between different materials (including metals, semiconductors, and insulators) based on differences in their thermal conductivities.
READ LESS

Summary

We have developed a noncontact, photothermal materials characterization method based on visible-light speckle imaging. This technique is applied to remotely measure the infrared absorption spectra of materials and to discriminate materials based on their thermal conductivities. A wavelength-tunable (7.5-8.7 um), intensity-modulated, quantum cascade pump laser and a continuous-wave 532 nm...

READ MORE

Coherent beam-combining of quantum cascade amplifier arrays

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.
READ LESS

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.

READ MORE

Advanced trigger development

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 1, November 2007, pp. 29-62.

Summary

The deadliest form of a biological attack is aerosolized agents dispersed into the atmosphere. Early detection of aerosolized biological agents is important for defense against these agents. Because of the wide range of possible attack scenarios and attack responses, there is also a wide range of detector requirements. This article focuses on real-time, single-particle, optically based bio-agent trigger detectors--the first responder to an aerosol attack--and how to engineer these detectors to achieve optimal detection performance.
READ LESS

Summary

The deadliest form of a biological attack is aerosolized agents dispersed into the atmosphere. Early detection of aerosolized biological agents is important for defense against these agents. Because of the wide range of possible attack scenarios and attack responses, there is also a wide range of detector requirements. This article...

READ MORE

Measurement of aerosol-particle trajectories using a structured laser beam

Summary

What is believed to be a new concept for the measurement of micrometer-sized particle trajectories in an inlet air stream is introduced. The technique uses a light source and a mask to generate a spatial pattern of light within a volume in space. Particles traverse the illumination volume and elastically scatter light to a photodetector where the signal is recorded in time. The detected scattering waveform is decoded to find the particle trajectory. A design is presented for the structured laser beam, and the accuracy of the technique in determining particle position is demonstrated. It is also demonstrated that the structured laser beam can be used to measure and then correct for the spatially dependent instrument-response function of an optical-scattering-based particle-sizing system for aerosols.
READ LESS

Summary

What is believed to be a new concept for the measurement of micrometer-sized particle trajectories in an inlet air stream is introduced. The technique uses a light source and a mask to generate a spatial pattern of light within a volume in space. Particles traverse the illumination volume and elastically...

READ MORE

Showing Results

1-7 of 7