Publications
Tagged As
Rapid Quantitative Analysis of Multiple Explosive Compound Classes on a Single Instrument via Flow-Injection Analysis Tandem Mass Spectrometry
Summary
Summary
A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to...
Key Challenges and Prospects for Optical Standoff Trace Detection of Explosives
Summary
Summary
Sophisticated improvised explosive devices (IEDs) challenge the capabilities of current sensors, particularly in areas away from static checkpoints. This security gap could be filled by standoff chemical sensors that detect IEDs based on external trace explosive residues. Unfortunately, previous efforts have not led to widely deployed capabilities. Crucially, the physical...
Raman Detection of a Single Airborne Aerosol Particles of Isovanillin(3.09 MB)
Summary
Summary
Raman spectroscopy of trapped single aerosol particles has been reported previously. However, detection of single aerosol particles via Raman spectroscopy in a flowing system has not been yet reported. In this paper, we describe the first detection of single 3 um flowing airborne aerosol particles flowing through a Raman system...
Use of Photoacoustic Excitation and Laser Vibrometry to Remotely Detect Trace Explosives
Summary
Summary
In this paper, we examine a laser-based approach to remotely initiate, measure, and differentiate acoustic and vibrational emissions from trace quantities of explosive materials against their environment. Using a pulsed ultraviolet laser (266 nm), we induce a significant (>100 Pa) photoacoustic response from small quantities of military-grade explosives. The photoacoustic signal...
Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1
Summary
Summary
Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact ( 2'x2'x2'), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these...
Chemical aerosol detection and identification using Raman scattering
Summary
Summary
Early warning of the presence of chemical agent aerosols is an important component in the defense against such agents. A Raman spectrometer has been constructed for the purpose of detecting and identifying chemical aerosols. We report the detection and identification of a low-concentration chemical aerosol in atmospheric air using 532-nm...