Publications
Tagged As
Design, simulation, and fabrication of three-dimensional microsystem components using grayscale photolithography
Summary
Summary
Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss...
Discovering the smallest observed near-earth objects with the space surveillance telescope
Summary
Summary
The Space Surveillance Telescope (SST) is an advanced optical sensor designed and tested by MIT Lincoln Laboratory for the Defense Advanced Research Projects Agency (DARPA), which is currently in the process of being integrated into the Space Surveillance Network. By operating the telescope in a manner normally intended for the...
Highly Efficient All-Optical Beam Modulation Utilizing Thermo-optic Effects
Summary
Summary
Suspensions of plasmonic nanoparticles can diffract optical beams due to the combination of thermal lensing and self-phase modulation. Here, we demonstrate extremely efficient optical continuous wave (CW) beam switching across the visible range in optimized suspensions of 5-nm Au and Ag nanoparticles in non-polar solvents, such as hexane and decane...
Photonic lantern kW-class fiber amplifier
Summary
Summary
Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control and a photonic lantern front end was achieved. An array of three single-mode fiber inputs was used to adaptively inject the appropriate superposition of input modes in a three-mode gain fiber to achieve the desired mode at the...
Efficient cryogenic near-infrared Tm:YLF laser
Summary
Summary
Operation of a cw thulium laser emitting at 816 nm has been demonstrated in bulk Tm:YLF with 46% slope efficiency. Prior cw demonstrations of this transition have been limited to ZBLAN fiber hosts and prior lasing in bulk crystalline host material has been limited to quasi-cw operation due to population...
Fluidic microoptics with adjustable focusing and beam steering for single cell optogenetics
Summary
Summary
Electrically controlled micron-scale liquid lenses have been designed, fabricated and demonstrated, that provide both adjustable focusing and beam steering, with the goal of applying them to optogenetic in vivo mapping of brain activity with single cell resolution. The liquid lens is formed by the interface between two immiscible liquids which...
Broadband transparent optical phase change materials
Summary
Summary
We report a new group of optical phase change materials Ge-Sb-Se-Te (GSST) with low loss from telecom bands to LWIR. We further demonstrated GSST-integratedSiN photonics with significantly improved switching performance over conventional GST alloys.
High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design
Summary
Summary
We have previously shown through simulation that an optical beam deflector based on the Pancharatnam (geometric) phase can provide high efficiency with up to 80° deflection using a dual-twist structure for polarization-state control [Appl. Opt. 54, 10035 (2015)]. In this report, we demonstrate that its optical performance is as predicted...
Picosecond kilohertz-class cryogenically cooled multistage Yb-doped chirped pulse amplifier
Summary
Summary
A multistage cryogenic chirped pulse amplifier has been developed, utilizing two different Yb-doped gain materials in subsequent amplifier stages. A Yb:GSAG regenerative amplifier followed by a Yb:YAG power amplifier is able to deliver pulses with a broader bandwidth than a system using only one of these two gain media throughout...
Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering
Summary
Summary
We report a photothermal modulation of Mie scattering (PMMS) method that enables concurrent spatial and spectral discrimination of individual micron-sized particles. This approach provides a direct measurement of the "fingerprint" infrared absorption spectrum with the spatial resolution of visible light. Trace quantities (tens of picograms) of material were deposited onto...