Publications
Photonic lantern kW-class fiber amplifier
Summary
Summary
Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control and a photonic lantern front end was achieved. An array of three single-mode fiber inputs was used to adaptively inject the appropriate superposition of input modes in a three-mode gain fiber to achieve the desired mode at the...
Photonic lantern adaptive spatial mode control in LMA fiber amplifiers
Summary
Summary
We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By...
Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system
Summary
Summary
We present a high-repetition-frequency, diode-pumped, and chirped-pulse amplification system operating at 106 W average output with excellent beam quality (M^2 = 1.3), based on cryogenically cooled Yb:YLF. 1 nJ seed pulses, derived from a mode-locked Ti:sapphire laser, are first amplified to 1 mJ pulse energy at 10 kHz repetition frequency...
Diffractive beam combining of a 2.5-kW fiber laser array
Summary
Summary
Five 500-W fiber amplifiers were coherently combined with 79% efficiency using a diffractive optical element (DOE) combiner, generating a single beam whose M^2 = 1.1 beam quality exceeded that of the inputs.
High-power, low-noise 1.5-um slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications
Summary
Summary
We review the development of a new class of high-power, edge-emitting, semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. We restrict the scope to InP-based devices incorporating either InGaAsP or InGaAlAs quantum-well active regions and operating in the 1.5-μm-wavelength region. Key properties of the SCOW gain...
Cryogenic Yb3+ -doped materials for pulsed solid-state laser applications
Summary
Summary
We review recent progress in pulsed lasers using cryogenically-cooled Yb3+ -doped gain media, with an emphasis on high average power. Recent measurements of thermo-optic properties for various host material at both room and cryogenic temperature are presented, including themral conductivity, coefficient of thermal expansion and refractive index. Host materials reviewed...
Cryogenic YB3+-doped solid-state lasers
Summary
Summary
Cryogenically cooled solid-state lasers promise a revolution in power scalability while maintaining a good beam quality because of significant improvements in efficiency and thermo-optic properties. This is particularly true forYb3+ lasers because of their relatively lowquantum defect and relatively broadband absorption even at cryogenic temperatures. Thermo-optic properties of host materials...
250 mW, 1.5 um monolithic passively mode-locked slab-coupled optical waveguide laser
Summary
Summary
We report the demonstration of a 1.5 um InGaAsP mode-locked slab-coupled optical waveguide laser (SCOWL) producing 10 ps pulses with energies of 58 pJ and average output powers of 250 mW at a repetition rate of 4.29 GHz. To the best of our knowledge, this is the first passively mode-locked...