Publications

Refine Results

(Filters Applied) Clear All

Cryogenically cooled, 149 W, Q-switched, YbLiYF4 laser

Published in:
Opt. Lett., Vol. 38, No. 20, 15 October 2013, pp. 4260-1.

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic effects and high thermal efficiency. The measured heat load to the cryogen is 0.15 W per watt of output. These results show the potential for significant power scaling of Q-switched Yb:YLF lasers with excellent beam quality.
READ LESS

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic...

READ MORE

Cryogenic YB3+-doped solid-state lasers

Published in:
IEEE J. Sel. Topics in Quantum Electron., Vol. 13, No. 3, May/June 2007, pp. 448-459.

Summary

Cryogenically cooled solid-state lasers promise a revolution in power scalability while maintaining a good beam quality because of significant improvements in efficiency and thermo-optic properties. This is particularly true forYb3+ lasers because of their relatively lowquantum defect and relatively broadband absorption even at cryogenic temperatures. Thermo-optic properties of host materials, including thermal conductivity, thermal expansion, and refractive index at low temperature, are reviewed and data presented for YAG (ceramic and single crystal), GGG, GdVO4, and Y2O3. Spectroscopic properties of Yb:YAG and Yb:LiYF4 (YLF) including absorption cross sections, emission cross sections, and fluorescence lifetimes at cryogenic temperatures are characterized. Recent experiments have pushed the power from an end-pumped cryogenically cooled Yb:YAG laser to 455-W continuous-wave output power from 640-W incident pump power at anM2 of 1.4.
READ LESS

Summary

Cryogenically cooled solid-state lasers promise a revolution in power scalability while maintaining a good beam quality because of significant improvements in efficiency and thermo-optic properties. This is particularly true forYb3+ lasers because of their relatively lowquantum defect and relatively broadband absorption even at cryogenic temperatures. Thermo-optic properties of host materials...

READ MORE

Showing Results

1-2 of 2