Publications

Refine Results

(Filters Applied) Clear All

MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: impact of growth and material quality on laser performance

Summary

The quality of epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL performance, and establishing correlations between epitaxial growth and materials properties is of critical importance for continuing improvements. We present an overview of the growth challenges of these complex QCL structures; describe the metalorganic vapor phase epitaxy growth of AlInAs/GaInAs/InP QCL materials; discuss materials properties that impact QCL performance; and investigate various QCL structure modifications and their effects on QCL performance. We demonstrate uncoated buried-heterostructure 9.3-um QCLs with 1.32-W continuous-wave output power and maximum wall plug efficiency (WPE) of 6.8%. This WPE is more than 50% greater than previously reported WPEs for unstrained QCLs emitting at 8.9 um and only 30% below strained QCLs emitting around 9.2 um.
READ LESS

Summary

The quality of epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL performance, and establishing correlations between epitaxial growth and materials properties is of critical importance for continuing improvements. We present an overview of the growth challenges of these complex QCL structures; describe the metalorganic vapor...

READ MORE

Coherent beam-combining of quantum cascade amplifier arrays

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.
READ LESS

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.

READ MORE

High efficiency coherent beam combining of semiconductor optical amplifiers

Published in:
Opt. Lett., Vol. 37, No. 23, 1 December 2012, pp. 5006-5008.

Summary

We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was achieved via active feedback on each amplifier's drive current to maximize the power in the combined beam. The combining efficiency at all current levels was nearly constant at 87%.
READ LESS

Summary

We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was...

READ MORE

External cavity beam combining of 21 semiconductor lasers using SPGD

Published in:
Appl. Opt., Vol. 51, No. 11, 10 April 2012, pp. 1724-1728.

Summary

Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity configuration compared with an upper limit of 90% efficiency in the particular configuration of the experiment. Our beam combining system utilizes a stochastic parallel gradient descent (SPGD) algorithm for active phase control. This work demonstrates that active beam combining is not subject to the scaling limits imposed on passive-phasing systems.
READ LESS

Summary

Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity configuration compared with...

READ MORE

Advanced packaging of high-power slab-coupled optical waveguide laser and amplifier arrays for coherent beam combining

Summary

Individually addressable GaAs-based 9XX-nm Slab-Coupled Optical Waveguide (SCOW) laser and amplifier arrays have been demonstrated in a modular 2-D stacked architecture. Approximately 20 W of coherently-combined power was obtained from two optically stacked amplifier modules.
READ LESS

Summary

Individually addressable GaAs-based 9XX-nm Slab-Coupled Optical Waveguide (SCOW) laser and amplifier arrays have been demonstrated in a modular 2-D stacked architecture. Approximately 20 W of coherently-combined power was obtained from two optically stacked amplifier modules.

READ MORE

Showing Results

1-5 of 5