This paper describes advances in the use of confusion networks as interface between automatic speech recognition and machine translation. In particular, it presents a decoding algorithm for confusion networks which results as an extension of a state-of-the-art phrase-based text translation decoder. The confusion network decoder significantly improves both in efficiency and performance over previous work along this direction, and outperforms the background text translation system. Experimental results in terms of translation accuracy and decoding efficiency are reported for the task of translating plenary speeches of the European Parliament from Spanish to English and from English to Spanish.