Publications
Tagged As
The AFRL-MITLL WMT16 news-translation task systems
Summary
Summary
This paper describes the AFRL-MITLL statistical machine translation systems and the improvements that were developed during the WMT16 evaluation campaign. New techniques applied this year include Neural Machine Translation, a unique selection process for language modelling data, additional out-of-vocabulary transliteration techniques, and morphology generation.
The MITLL-AFRL IWSLT 2015 Systems
Summary
Summary
This report summarizes the MITLL-AFRL MT, ASR and SLT systems and the experiments run using them during the 2015 IWSLT evaluation campaign. We build on the progress made last year, and additionally experimented with neural MT, unknown word processing, and system combination. We applied these techniques to translating Chinese to...
The AFRL-MITLL WMT15 System: there's more than one way to decode it!
Summary
Summary
This paper describes the AFRL-MITLL statistical MT systems and the improvements that were developed during the WMT15 evaluation campaign. As part of these efforts we experimented with a number of extensions to the standard phrase-based model that improve performance on the Russian to English translation task creating three submission systems...
The MITLL/AFRL IWSLT-2014 MT System
Summary
Summary
This report summarizes the MITLL-AFRL MT and ASR systems and the experiments run using them during the 2014 IWSLT evaluation campaign. Our MT system is much improved over last year, owing to integration of techniques such as PRO and DREM optimization, factored language models, neural network joint model rescoring, multiple...
Using deep belief networks for vector-based speaker recognition
Summary
Summary
Deep belief networks (DBNs) have become a successful approach for acoustic modeling in speech recognition. DBNs exhibit strong approximation properties, improved performance, and are parameter efficient. In this work, we propose methods for applying DBNs to speaker recognition. In contrast to prior work, our approach to DBNs for speaker recognition...
Talking Head Detection by Likelihood-Ratio Test(220.2 KB)
Summary
Summary
Detecting accurately when a person whose face is visible in an audio-visual medium is the audible speaker is an enabling technology with a number of useful applications. The likelihood-ratio test formulation and feature signal processing employed here allow the use of high-dimensional feature sets in the audio and visual domain...
Content+context=classification: examining the roles of social interactions and linguist content in Twitter user classification
Summary
Summary
Twitter users demonstrate many characteristics via their online presence. Connections, community memberships, and communication patterns reveal both idiosyncratic and general properties of users. In addition, the content of tweets can be critical for distinguishing the role and importance of a user. In this work, we explore Twitter user classification using...
Exploiting morphological, grammatical, and semantic correlates for improved text difficulty assessment
Summary
Summary
We present a low-resource, language-independent system for text difficulty assessment. We replicate and improve upon a baseline by Shen et al. (2013) on the Interagency Language Roundtable (ILR) scale. Our work demonstrates that the addition of morphological, information theoretic, and language modeling features to a traditional readability baseline greatly benefits...
A new multiple choice comprehension test for MT
Summary
Summary
We present results from a new machine translation comprehension test, similar to those developed in previous work (Jones et al., 2007). This test has documents in four conditions: (1) original English documents; (2) human translations of the documents into Arabic; conditions (3) and (4) are machine translations of the Arabic...
Standardized ILR-based and task-based speech-to-speech MT evaluation
Summary
Summary
This paper describes a new method for task-based speech-to-speech machine translation evaluation, in which tasks are defined and assessed according to independent published standards, both for the military tasks performed and for the foreign language skill levels used. We analyze task success rates and automatic MT evaluation scores (BLEU and...