We propose a superconducting qubit design, based on a tunable rf SQUID and nanowire kinetic inductors, which has a dramatically reduced transverse electromagnetic coupling to its environment, so that its excited state should be metastable. If electromagnetic interactions are in fact responsible for the current excited-state decay rates of superconducting qubits, this design should result in a qubit lifetime orders of magnitude longer than currently possible. Furthermore, since accurate manipulation and readout of superconducting qubits is currently limited by spontaneous decay, much higher fidelities may be realizable with this design.