Publications

Refine Results

(Filters Applied) Clear All

Digital signal processing applications in cochlear-implant research

Published in:
Lincoln Laboratory Journal, Vol. 7, No. 1, Spring 1994, pp. 31-62.

Summary

We have developed a facility that enables scientists to investigate a wide range of sound-processing schemes for human subjects with cochlear implants. This digital signal processing (DSP) facility-named the Programmable Interactive System for Cochlear Implant Electrode Stimulation (PISCES)-was designed, built, and tested at Lincoln Laboratory and then installed at the Cochlear Implant Research Laboratory (CIRL) of the Massachusetts Eye and Ear Infirmary (MEEI). New stimulator algorithms that we designed and ran on PISCES have resulted in speech-reception improvements for implant subjects relative to commercial implant stimulators. These improvements were obtained as a result of interactive algorithm adjustment in the clinic, thus demonstrating the importance of a flexible signal-processing facility. Research has continued in the development of a laboratory-based, sohare-controlled, real-time, speech processing system; the exploration of new sound-processing algorithms for improved electrode stimulation; and the design of wearable stimulators that will allow subjects full-time use of stimulator algorithms developed and tested in a laboratory setting.
READ LESS

Summary

We have developed a facility that enables scientists to investigate a wide range of sound-processing schemes for human subjects with cochlear implants. This digital signal processing (DSP) facility-named the Programmable Interactive System for Cochlear Implant Electrode Stimulation (PISCES)-was designed, built, and tested at Lincoln Laboratory and then installed at the...

READ MORE

Showing Results

1-1 of 1