Publications

Refine Results

(Filters Applied) Clear All

Bounded-collusion attribute-based encryption from minimal assumptions

Published in:
IACR 20th Int. Conf. on Practice and Theory of Public Key Cryptography, PKC 2017, 28-31 March 2017.

Summary

Attribute-based encryption (ABE) enables encryption of messages under access policies so that only users with attributes satisfying the policy can decrypt the ciphertext. In standard ABE, an arbitrary number of colluding users, each without an authorized attribute set, cannot decrypt the ciphertext. However, all existing ABE schemes rely on concrete cryptographic assumptions such as the hardness of certain problems over bilinear maps or integer lattices. Furthermore, it is known that ABE cannot be constructed from generic assumptions such as public-key encryption using black-box techniques. In this work, we revisit the problem of constructing ABE that tolerates collusions of arbitrary but a priori bounded size. We present two ABE schemes secure against bounded collusions that require only semantically secure public-key encryption. Our schemes achieve significant improvement in the size of the public parameters, secret keys, and ciphertexts over the previous construction of bounded-collusion ABE from minimal assumptions by Gorbunov et al. (CRYPTO 2012). In fact, in our second scheme, the size of ABE secret keys does not grow at all with the collusion bound. As a building block, we introduce a multidimensional secret-sharing scheme that may be of independent interest. We also obtain bounded-collusion symmetric-key ABE (which requires the secret key for encryption) by replacing the public-key encryption with symmetric-key encryption, which can be built from the minimal assumption of one-way functions.
READ LESS

Summary

Attribute-based encryption (ABE) enables encryption of messages under access policies so that only users with attributes satisfying the policy can decrypt the ciphertext. In standard ABE, an arbitrary number of colluding users, each without an authorized attribute set, cannot decrypt the ciphertext. However, all existing ABE schemes rely on concrete...

READ MORE

Charting a security landscape in the clouds: data protection and collaboration in cloud storage

Summary

This report surveys different approaches to securely storing and sharing data in the cloud based on traditional notions of security: confidentiality, integrity, and availability, with the main focus on confidentiality. An appendix discusses the related notion of how users can securely authenticate to cloud providers. We propose a metric for comparing secure storage approaches based on their residual vulnerabilities: attack surfaces against which an approach cannot protect. Our categorization therefore ranks approaches from the weakest (the most residual vulnerabilities) to the strongest (the fewest residual vulnerabilities). In addition to the security provided by each approach, we also consider their inherent costs and limitations. This report can therefore help an organization select a cloud data protection approach that satisfies their enterprise infrastructure, security specifications, and functionality requirements.
READ LESS

Summary

This report surveys different approaches to securely storing and sharing data in the cloud based on traditional notions of security: confidentiality, integrity, and availability, with the main focus on confidentiality. An appendix discusses the related notion of how users can securely authenticate to cloud providers. We propose a metric for...

READ MORE

Iris biometric security challenges and possible solutions: for your eyes only? Using the iris as a key

Summary

Biometrics were originally developed for identification, such as for criminal investigations. More recently, biometrics have been also utilized for authentication. Most biometric authentication systems today match a user's biometric reading against a stored reference template generated during enrollment. If the reading and the template are sufficiently close, the authentication is considered successful and the user is authorized to access protected resources. This binary matching approach has major inherent vulnerabilities. An alternative approach to biometric authentication proposes to use fuzzy extractors (also known as biometric cryptosystems), which derive cryptographic keys from noisy sources, such as biometrics. In theory, this approach is much more robust and can enable cryptographic authorization. Unfortunately, for many biometrics that provide high-quality identification, fuzzy extractors provide no security guarantees. This gap arises in part because of an objective mismatch. The quality of a biometric identification is typically measured using false match rate (FMR) versus false nonmatch rate (FNMR). As a result, biometrics have been extensively optimized for this metric. However, this metric says little about the suitability of a biometric for key derivation. In this article, we illustrate a metric that can be used to optimize biometrics for authentication. Using iris biometrics as an example, we explore possible directions for improving processing and representation according to this metric. Finally, we discuss why strong biometric authentication remains a challenging problem and propose some possible future directions for addressing these challenges.
READ LESS

Summary

Biometrics were originally developed for identification, such as for criminal investigations. More recently, biometrics have been also utilized for authentication. Most biometric authentication systems today match a user's biometric reading against a stored reference template generated during enrollment. If the reading and the template are sufficiently close, the authentication is...

READ MORE

Showing Results

1-3 of 3