In the design of a tracking filter for air traffic control (ATC) applications, a maneuvering aircraft can be modelled by a linear system with random noise accelerations. A Kalman filter tracker, designed on the basis of a variance chosen according to the distribution of the potential maneuver accelerations, will maintain track during maneuvers and provide some improvement in position accuracy. However, during those portions of the flight path where the aircraft is not maneuvering, the tracking accuracy will not be as good as if no acceleration noise had been allowed in the tracking filter. In this paper, statistical decision theory is used to derive an optimal test for detecting the aircraft maneuver: a more practical suboptimal test is then deduced from the optimal test. As long as no maneuver is declared, a simpler filter, based on a constant-velocity model, is used to track the aircraft. When a maneuver is detected, the tracker is reinitialized using stored data, up-dated to the present time, and then normal tracking is resumed as new data arrives. In essence, the tracker performs on the basis of a piecewise linear model in which the breakpoints are defined on-line using the maneuver detector. Simulation results show that there is a significant improvement in tracking capability using the decision-directed adaptive tracker.