Dual-Doppler measurements of microburst outflow strength asymmetry
Summary
The Federal Aviation Administration (FAA) has been sponsoring Lincoln Laboratory in its effort to develop and test weather detection algorithms for the Terminal Doppler Weather Radar (TDWR). An automated microburst detection algorithm operates on the TDWR radial velocity data and, based on the shear and velocity difference along the radial, outputs regions which are hazards to aviation. This algorithm has been operating since 1987 in Denver, Kansas City, and Orlando and is part of the operational TDWR being deployed across the country. One issue which continues to cause concern for automated windshear detection is microburst asymmetry. Asymmetry, or aspect angle dependence, in microbursts refers to outflows which have a divergent surface outflow strength or extent that varies depending on the viewing angle of the radar. The TDWR is a single-Doppler radar, therefore, an asymmetric microburst may be underestimated or go undetected if the radar is viewing the event from an aspect angle where the strength of the outflow is weak. Past work by Wilson et al., Eilts, and Hallowell has indicated that some microbursts are highly asymmetric. Strength asymmetries (maximum/minimum strength over all viewing angles) from these past studies ranged from 1.3 to as high as 6.0. Hallowell using Denver data examined 27 Denver microbursts (96 observations) and found strength asymmetries from 1.3 to 3.8 with a median of 1.9. However, this previous work has been limited in scope to Denver and Oklahoma (plains) microbursts, and may have used assumptions about the data which introduce false or apparent asymmetry.