ACAS X is the next generation airborne collision avoidance system intended to meet the demands of the rapidly evolving U.S. National Airspace System (NAS). The collision avoidance safety and operational suitability of the system are optimized and continuously evaluated by simulating billions of characteristic aircraft encounters in a fast-time Monte Carlo environment. There is therefore an inherent computational cost associated with each ACAS X design iteration and parallelization of the simulations is necessary to keep up with rapid design cycles. This work describes an effort to profile and enhance the parallel computing infrastructure deployed on the computing resources offered by the Lincoln Laboratory Supercomputing Center. The approach to large-scale parallelization of our fast-time airspace encounter simulation tool is presented along with corresponding parallel profile data collected on different kinds of compute nodes. A simple stochastic model for distributed simulation is also presented to inform optimal work batching for improved simulation efficiency. The paper concludes with a discussion on how this high-performance parallel simulation method enables the rapid safety-critical design of ACAS X in a fast-paced iterative design process.