This report is motivated by the recognition that serving highly distributed electric power load in Puerto Rico during extreme events requires innovative methods. To do this, we must determine the type and locations of the most critical equipment, innovative methods, and software for operating the electrical system most effectively. It is well recognized that the existing system needs to be both hardened and further enhanced by deploying Distributed Energy Resources (DERs), solar photovoltaics (PV) in particular, and local reconfigurable microgrids to manage these newly deployed DERs. While deployment of microgrids and DERs has been advocated by many, there is little fundamental understanding how to operate Puerto Rico's electrical system in a way that effectively uses DERs during both normal operations and grid failures. Utility companies' traditional reliability requirements and operational risk management practices rely on excessive amounts of centralized reserve generation to anticipate failures, which increases the cost of normal operations and nullifies the potential of DERs to meet loads during grid failures. At present, no electric power utility has a ready-to-use framework that overcomes these limitations. This report seeks to fill this void.