Summary
In this paper we study dynamical distortion problems in future electrical energy systems with high renewable penetration. We introduce a new time-domain modeling of electrical energy systems comprising inverter-controlled distributed energy resources (DERs). This modeling is first used to quantify the relations between distortions and real/reactive power dynamics. Next, to ensure acceptable Quality of Service (QoS), a novel nonlinear distributed inverter control is introduced. Sufficient conditions are established for the guaranteed performance of the proposed control. These conditions further support the practical implementation of the derived controller. The effectiveness of this enhanced control is illustrated using simulations for the case of avoiding system instability during sudden grid reconfigurations. Simulations also show that distortions can be suppressed in systems with parallel-connected solar photovoltaics (PVs).