Publications

Refine Results

(Filters Applied) Clear All

High quality of service in future electrical energy systems: a new time-domain approach

Author:
Published in:
IEEE Trans. on Sustainable Energy, vol. 12, no. 2, pp. 1196-1205, April 2021, doi: 10.1109/TSTE.2020.3038884.
Topic:
R&D group:

Summary

In this paper we study dynamical distortion problems in future electrical energy systems with high renewable penetration. We introduce a new time-domain modeling of electrical energy systems comprising inverter-controlled distributed energy resources (DERs). This modeling is first used to quantify the relations between distortions and real/reactive power dynamics. Next, to ensure acceptable Quality of Service (QoS), a novel nonlinear distributed inverter control is introduced. Sufficient conditions are established for the guaranteed performance of the proposed control. These conditions further support the practical implementation of the derived controller. The effectiveness of this enhanced control is illustrated using simulations for the case of avoiding system instability during sudden grid reconfigurations. Simulations also show that distortions can be suppressed in systems with parallel-connected solar photovoltaics (PVs).
READ LESS

Summary

In this paper we study dynamical distortion problems in future electrical energy systems with high renewable penetration. We introduce a new time-domain modeling of electrical energy systems comprising inverter-controlled distributed energy resources (DERs). This modeling is first used to quantify the relations between distortions and real/reactive power dynamics. Next, to...

READ MORE

Toward distributed control for reconfigurable robust microgrids

Published in:
2020 IEEE Energy Conversion Congress and Exposition, ECCE, 11-15 October 2020.
R&D group:

Summary

Microgrids have been seen as a good solution to providing power to forward-deployed military forces. However, compatibility, robustness and stability of current solutions are often questionable. To overcome some of these problems, we first propose a theoretically-sound modeling method which defines common microgrid component interfaces using power and rate of change of power. Using this modeling approach, we propose a multi-layered distributed control: the higher control layer participates in dynamic power management that ensures acceptable voltage, while the lower layer stabilizes frequency by regulating the dynamics to the power determined by the higher layer. Numerical and hardware tests are conducted to evaluate the effectiveness of the proposed control.
READ LESS

Summary

Microgrids have been seen as a good solution to providing power to forward-deployed military forces. However, compatibility, robustness and stability of current solutions are often questionable. To overcome some of these problems, we first propose a theoretically-sound modeling method which defines common microgrid component interfaces using power and rate of...

READ MORE

Unified value-based feedback, optimization and risk management in complex electric energy systems

Author:
Published in:
Optim Eng 21, 427–483 (2020)
R&D group:

Summary

The ideas in this paper are motivated by an increased need for systematic data-enabled resource management of large-scale electric energy systems. The basic control objective is to manage uncertain disturbances, power imbalances in particular, by optimizing available power resources. To that end, we start with a centralized optimal control problem formulation of system-level performance objective subject to complex interconnection constraints and constraints representing highly heterogeneous internal dynamics of system components. To manage spatial complexity, an inherent multi-layered structure is utilized by modeling interconnection constraints in terms of unifed power variables and their dynamics. Similarly, the internal dynamics of components and sub-systems (modules), including their primary automated feedback control, is modeled so that their input–output characterization is also expressed in terms of power variables. This representation is shown to be key to managing the multi-spatial complexity of the problem. In this unifying energy/ power state space, the system constraints are all fundamentally convex, resulting in the convex dynamic optimization problem, for typically utilized quadratic cost functions. Based on this, an interactive multi-layered modeling and control method is introduced. While the approach is fundamentally based on the primal–dual decomposition of the centralized problem, this is formulated for the frst time for the couple real-reactive power problem. It is also is proposed for the frst time to utilize sensitivity functions of distributed agents for solving the primal distributed problem. Iterative communication complexity typically required for convergence of pointwise information exchange is replaced by the embedded distributed optimization by the modules when creating these functions. A theoretical proof of the convergence claim is given. Notably, the inherent multi-temporal complexity is managed by performing model predictive control (MPC)-based decision making when solving distributed primal problems. The formulation enables distributed decision-makers to value uncertainties and related risks according to their preferences. Ultimately, the distributed decision making results in creating a bid function to be used at the coordinating market-clearing level. The optimization approach in this paper provides a theoretical foundation for next-generation Supervisory Control and Data Acquisition (SCADA) in support of a Dynamic Monitoring and Decision Systems (DyMonDS) for a multi-layered interactive market implementation in which the grid users follow their sub-objectives and the higher layers coordinate interconnected sub-systems and the high-level system objectives. This forms a theoretically sound basis for designing IT-enabled protocols for secure operations, planning, and markets.
READ LESS

Summary

The ideas in this paper are motivated by an increased need for systematic data-enabled resource management of large-scale electric energy systems. The basic control objective is to manage uncertain disturbances, power imbalances in particular, by optimizing available power resources. To that end, we start with a centralized optimal control problem...

READ MORE

Toward technically feasible and economically efficient integration of distributed energy resources

Author:
Published in:
57th Annual Allerton Conf. on Communication, Control, and Computing, 24-27 September 2019.

Summary

This paper formulates the efficient and feasible participation of distributed energy resources (DERs) in complex electricity services as a centralized nonlinear optimization problem first. This problem is then re-stated using the novel energy/power transformed state space. It is shown that the DER dynamics in closed-loop can be made linear in this new state space. The decision making by the DERs then becomes a distributed model predictive control problem and it forms the basis for deriving physically implementable convex market bids. A multi-layered interactive optimization for clearing the distributed bids by higher layer decision makers, such as market aggregators, is posed and shown to lead to near-optimal system-level performance at the slower market clearing rates. A proof-of-concept example is illustrated involving close to one hundred heterogeneous controllable DERs with real consumption data of a distribution feeder in Texas, contributing to automatic generation control (AGC).
READ LESS

Summary

This paper formulates the efficient and feasible participation of distributed energy resources (DERs) in complex electricity services as a centralized nonlinear optimization problem first. This problem is then re-stated using the novel energy/power transformed state space. It is shown that the DER dynamics in closed-loop can be made linear in...

READ MORE

A Framework for Evaluating Electric Power Grid Improvements in Puerto Rico(2.58 MB)

Summary

This report is motivated by the recognition that serving highly distributed electric power load in Puerto Rico during extreme events requires innovative methods. To do this, we must determine the type and locations of the most critical equipment, innovative methods, and software for operating the electrical system most effectively. It is well recognized that the existing system needs to be both hardened and further enhanced by deploying Distributed Energy Resources (DERs), solar photovoltaics (PV) in particular, and local reconfigurable microgrids to manage these newly deployed DERs. While deployment of microgrids and DERs has been advocated by many, there is little fundamental understanding how to operate Puerto Rico’s electrical system in a way that effectively uses DERs during both normal operations and grid failures. Utility companies’ traditional reliability requirements and operational risk management practices rely on excessive amounts of centralized reserve generation to anticipate failures, which increases the cost of normal operations and nullifies the potential of DERs to meet loads during grid failures. At present, no electric power utility has a ready-to-use framework that overcomes these limitations. This report seeks to fill this void.
READ LESS

Summary

This report is motivated by the recognition that serving highly distributed electric power load in Puerto Rico during extreme events requires innovative methods. To do this, we must determine the type and locations of the most critical equipment, innovative methods, and software for operating the electrical system most effectively. It...

READ MORE

Modular Aid and Power Pallet (MAPP): FY18 Energy Technical Investment Program

Published in:
MIT Lincoln Laboratory Report TIP-93

Summary

Electric power is a critical element of rapid response disaster relief efforts. Generators currently used have high failure rates and require fuel supply chains, and standardized renewable power systems are not yet available. In addition, none of these systems are designed for easy adaptation or repairs in the field to accommodate changing power needs as the relief effort progresses. To address this, the Modular Aid and Power Pallet, or MAPP, was designed to be a temporary, scalable, self-contained, user-focused power system. While some commercial systems are advertised for disaster relief systems, most are limited by mobility, custom battery assemblies (with challenges for air transport, ground mobility, or both), and the ability to power AC loads. While the first year system focused on an open architecture design with distributed DC units that could be combined to serve larger AC loads, the second year succeeded in minimizing or eliminating batteries while providing AC power for both the distributed and centralized systems. Therefore, individual modules can be distributed to power small AC loads such as laptop charging, or combined in series for larger loads such as water purification. Each module is powered by a small photovoltaic (PV) array connected to a prototype off-grid Enphase microinverter that can be used with or without energy storage. In addition, an output box for larger loads is included to provide a ground fault interrupt, under/over voltage relay, and the ability to change the system grounding to fit the needs of a more complicated system. The second year MAPP effort was divided into two phases: Phase 1 from October 2017 to March 20181 focused on refining requirements and vendor selection, and Phase 2 from March 2018 to October 20182 focusing on power electronics, working with the new Enphase microinverter, and ruggedizing the system. The end result is the Phase 2 effort has been designed, tested, and proven to form a robust AC power source that is flexible and configurable by the end user. Our testing has shown that operators can easily set up the system and adapt it to changing needs in the field.
READ LESS

Summary

Electric power is a critical element of rapid response disaster relief efforts. Generators currently used have high failure rates and require fuel supply chains, and standardized renewable power systems are not yet available. In addition, none of these systems are designed for easy adaptation or repairs in the field to...

READ MORE

Component standards for stable microgrids

Published in:
IEEE Trans. Power Syst., Vol. 34, No. 2, pp. 852-863. 2018.
R&D group:

Summary

This paper is motivated by the need to ensure fast microgrid stability. Modeling for purposes of establishing stability criterion and possible implementations are described. In particular, this paper proposes that highly heterogeneous microgrids comprising both conventional equipment and equipment based on rapidly emerging new technologies can be modeled as purely electric networks in order to provide intuitive insight into the issues of network stability. It is shown that the proposed model is valid for representing fast primary dynamics of diverse components (gensets, loads, PVs), assuming that slower variables are regulated by the higher-level controllers. Based on this modeling approach, an intuitively-appealing criterion is introduced requiring that components or their combined representations must behave as closed-loop passive electrical circuits. Implementing this criterion is illustrated using typical commercial feeder microgrid. Notably, these set the basis for standards which should be required for groups of components (sub grids) to ensure no fast instabilities in complex microgrids. Building the need for incrementally passive and monotonic characteristics into standards for network components may clarify the system level analysis and integration of microgrids.
READ LESS

Summary

This paper is motivated by the need to ensure fast microgrid stability. Modeling for purposes of establishing stability criterion and possible implementations are described. In particular, this paper proposes that highly heterogeneous microgrids comprising both conventional equipment and equipment based on rapidly emerging new technologies can be modeled as purely...

READ MORE

High performance computing techniques with power systems simulations

Published in:
IEEE High Performance Extreme Computing Conf., HPEC, 25-27 September 2018.
R&D group:

Summary

Small electrical networks (i.e., microgrids) and machine models (synchronous generators, induction motors) can be simulated fairly easily, on sequential processes. However, running a large simulation on a single process becomes infeasible because of complexity and timing issues. Scalability becomes an increasingly important issue for larger simulations, and the platform for running such large simulations, like the MIT Supercloud, becomes more important. The distributed computing network used to simulate an electrical network as the physical system presents new challenges, however. Different simulation models, different time steps, and different computation times for each process in the distributed computing network introduce new challenges not present with typical problems that are addressed with high performance computing techniques. A distributed computing network is established for some example electrical networks, and then adjustments are made in the parallel simulation set-up to alleviate the new kinds of challenges that come with modeling and simulating a physical system as diverse as an electrical network. Also, methods are shown to simulate the same electrical network in hundreds of milliseconds, as opposed to several seconds--a dramatic speedup once the simulation is parallelized.
READ LESS

Summary

Small electrical networks (i.e., microgrids) and machine models (synchronous generators, induction motors) can be simulated fairly easily, on sequential processes. However, running a large simulation on a single process becomes infeasible because of complexity and timing issues. Scalability becomes an increasingly important issue for larger simulations, and the platform for...

READ MORE

Fuel production systems for remote areas via an aluminum energy vector

Author:
Published in:
Energy Fuels, Vol. 32, no. 9, 2018, pp. 9033-9042.
R&D group:

Summary

Autonomous fuel synthesis in remote locations remains the Holy Grail of fuel delivery logistics. The burdened cost of delivering fuel to remote locations is often significantly more expensive than the purchase price. Here it is shown that newly developed solid aluminum metal fuel is suited for remote production of liquid diesel fuels. On a volumetric basis, aluminum has more than twice the energy of diesel fuel, making it a superb structural energy vector for remote applications. Once aluminum is treated with gallium, water of nearly any purity is used to rapidly oxidize the aluminum metal which spontaneously evolves hydrogen and heat in roughly equal energetic quantities. The benign byproduct of the reaction could, in theory, be taken to an off-site facility and recycled back into aluminum using standard smelting processes or it could be left onsite as a high-value waste. The hydrogen can easily be used as a feedstock for diesel fuel, via Fischer-Tropsch (FT) reaction mechanisms, while the heat can be leveraged for other processes, including synthesis gas compression. It is shown that as long as a carbon source, such as diesel fuel, is already present, additional diesel can be made by recovering and recycling the CO2 in the diesel exhaust. The amount of new diesel that can be made is directly related to the fraction of available CO2 that is recovered, with 100% recovery being equivalent to doubling the diesel fuel. The volume of aluminum required to accomplish this is lower than simply bringing twice as much diesel and results in a 50% increase in volumetric energy density. That is, 50% fewer fuel convoys would be required for fuel delivery. Moreover, aluminum has the potential to be exploited as a structural fuel that can be used as pallets, containers, etc., before being consumed to produce diesel. Furthermore, FT diesel production via aluminum and CO2 can be achieved without sacrificing electrical power generation.
READ LESS

Summary

Autonomous fuel synthesis in remote locations remains the Holy Grail of fuel delivery logistics. The burdened cost of delivering fuel to remote locations is often significantly more expensive than the purchase price. Here it is shown that newly developed solid aluminum metal fuel is suited for remote production of liquid...

READ MORE

Multi-layered interactive energy space modeling for near-optimal electrification of terrestrial, shipboard and aircraft systems

Author:
Published in:
Annual Reviews in Control, no. 45, 2018, pp. 52-75.
R&D group:

Summary

In this paper, we introduce a basic multi-layered modeling framework for posing the problem of safe, robust and efficient design and control that may lend itself to ripping potential benefits from electrification. The proposed framework establishes dynamic relations between physical concepts such as stored energy, useful work, and wasted energy, on one hand; and modeling, simulation, and control of interactive modular complex dynamical systems, on the other. In particular, our recently introduced energy state-space modeling approach for electric energy systems is further interpreted using fundamental laws of physics in multi-physical systems, such as terrestrial energy-systems, aircrafts and ships. The interconnected systems are modeled as dynamically interacting modules. This approach is shown to be particularly well-suited for scalable optimization of large-scale complex systems. Instead of having to use simpler models, the proposed multi-layered modeling of system dynamics in energy space offers a promising basic method for modeling and controlling inter-dependencies across multi-physics subsystems for both ensuring feasible and near-optimal operation. It is illustrated how this approach can be used for understanding fundamental physical causes of inefficiencies created either at the component level or are a result of poor matching of their interactions.
READ LESS

Summary

In this paper, we introduce a basic multi-layered modeling framework for posing the problem of safe, robust and efficient design and control that may lend itself to ripping potential benefits from electrification. The proposed framework establishes dynamic relations between physical concepts such as stored energy, useful work, and wasted energy...

READ MORE

Showing Results

1-10 of 19