Microgrids have been seen as a good solution to providing power to forward-deployed military forces. However, compatibility, robustness and stability of current solutions are often questionable. To overcome some of these problems, we first propose a theoretically-sound modeling method which defines common microgrid component interfaces using power and rate of change of power. Using this modeling approach, we propose a multi-layered distributed control: the higher control layer participates in dynamic power management that ensures acceptable voltage, while the lower layer stabilizes frequency by regulating the dynamics to the power determined by the higher layer. Numerical and hardware tests are conducted to evaluate the effectiveness of the proposed control.