Summary
The Traffic Alert and Collision Avoidance System (TCAS) is designed to reduce the risk of mid-air collisions by providing resolution advisories to pilots. The current version of the collision avoidance logic was hand-crafted over the course of many years and contains many parameters that have been tuned to varying extents and heuristic rules whose justification has been lost. Further development of the TCAS system is required to make the system compatible with next generation air traffic control procedures and surveillance systems that will reduce separation between aircraft. This report presents a decision-theoretic approach to optimizing the TCAS logic using probabilistic models of aircraft behavior and a cost metric that balances the cost of alerting with the cost of collision. Such an approach ahs the potential for meeting or exceeding the current safety level while lowering the false alert rate and simplifing the process of re-optimizing the logic in response to changes in the airspace and sensor capabilities.