The Traffic Alert and Collision Avoidance System (TCAS) has been shown to significantly reduce the risk of mid-air collision and is currently mandated worldwide on all large transport aircraft. Engineering the collision avoidance logic was a very costly undertaking that spanned several decades. The development followed an iterative process where the logic was specified using pseudocode, evaluated on encounters in simulation, and revised based on performance against a set of metrics. Modifying the logic to get the desired behavior is difficult because the pseudocode contains many heuristic rules that interact with each other in complex ways. Over the years, the TCAS logic has become challenging to maintain. With the anticipated introduction of next-generation air traffic control procedures and surveillance systems, the logic will require significant revision to prevent unnecessary alerts. Recent work has explored a new approach for designing collision avoidance systems that has the potential to shorten the development cycle, improve maintainability, and enhance safety with fewer false alerts. The approach involves leveraging recent advances in computation to automatically derive optimized collision avoidance logic directly from encounter models and performance metrics. This paper outlines the general approach and discusses the anticipated impact on development, safety, and operation.