Publications

Refine Results

(Filters Applied) Clear All

Passive operating system identification from TCP/IP packet headers

Published in:
ICDM Workshop on Data Mining for Computer Security, DMSEC, 19 November 2003.

Summary

Accurate operating system (OS) identification by passive network traffic analysis can continuously update less-frequent active network scans and help interpret alerts from intrusion detection systems. The most recent open-source passive OS identification tool (ettercap) rejects 70% of all packets and has a high 75-class error rate of 30% for non-rejected packets on unseen test data. New classifiers were developed using machine-learning approaches including cross-validation testing, grouping OS names into fewer classes, and evaluating alternate classifier types. Nearest neighbor and binary tree classifiers provide a low 9-class OS identification error rate of roughly 10% on unseen data without rejecting packets. This error rate drops to nearly zero when 10% of the packets are rejected.
READ LESS

Summary

Accurate operating system (OS) identification by passive network traffic analysis can continuously update less-frequent active network scans and help interpret alerts from intrusion detection systems. The most recent open-source passive OS identification tool (ettercap) rejects 70% of all packets and has a high 75-class error rate of 30% for non-rejected...

READ MORE

Analysis and results of the 1999 DARPA off-line intrusion detection evaluation

Published in:
Proc. Recent Advances in Intrusion Detection, RAID, 2-4 October 2000, pp. 162-182.

Summary

Eight sites participated in the second DARPA off-line intrusion detection evaluation in 1999. Three weeks of training and two weeks of test data were generated on a test bed that emulates a small government site. More than 200 instances of 58 attack types were launched against victim UNIX and Windows NT hosts. False alarm rates were low (less than 10 per day). Best detection was provided by network-based systems for old probe and old denial-of-service (DOS) attacks and by host-based systems for Solaris user-to-root (U2R) attacks. Best over-all performance would have been provided by a combined system that used both host- and network-based intrusion detection. Detection accuracy was poor for previously unseen new, stealthy, and Windows NT attacks. Ten of the 58 attack types were completely missed by all systems. Systems missed attacks because protocols and TCP services were not analyzed at all or to the depth required, because signatures for old attacks did not generalize to new attacks, and because auditing was not available on all hosts.
READ LESS

Summary

Eight sites participated in the second DARPA off-line intrusion detection evaluation in 1999. Three weeks of training and two weeks of test data were generated on a test bed that emulates a small government site. More than 200 instances of 58 attack types were launched against victim UNIX and Windows...

READ MORE

The 1999 DARPA Off-Line Intrusion Detection Evaluation

Published in:
Comput. Networks, Vol. 34, No. 4, October 2000, pp. 579-595.

Summary

Eight sites participated in the second Defense Advanced Research Projects Agency (DARPA) off-line intrusion detection evaluation in 1999. A test bed generated live background traffic similar to that on a government site containing hundreds of users on thousands of hosts. More than 200 instances of 58 attack types were launched against victim UNIX and Windows NT hosts in three weeks of training data and two weeks of test data. False-alarm rates were low (less than 10 per day). The best detection was provided by network-based systems for old probe and old denial-of-service (DOS) attacks and by host-based systems for Solaris user-to-root (U2R) attacks. The best overall performance would have been provided by a combined system that used both host- and network-based intrusion detection. Detection accuracy was poor for previously unseen, new, stealthy and Windows NT attacks. Ten of the 58 attack types were completely missed by all systems. Systems missed attacks because signatures for old attacks did not generalize to new attacks, auditing was not available on all hosts, and protocols and TCP services were not analyzed at all or to the depth required. Promising capabilities were demonstrated by host-based systems, anomaly detection systems and a system that performs forensic analysis on file system data.
READ LESS

Summary

Eight sites participated in the second Defense Advanced Research Projects Agency (DARPA) off-line intrusion detection evaluation in 1999. A test bed generated live background traffic similar to that on a government site containing hundreds of users on thousands of hosts. More than 200 instances of 58 attack types were launched...

READ MORE

Evaluating intrusion detection systems without attacking your friends: The 1998 DARPA intrusion detection evaluation

Summary

Intrusion detection systems monitor the use of computers and the network over which they communicate, searching for unauthorized use, anomalous behavior, and attempts to deny users, machines or portions of the network access to services. Potential users of such systems need information that is rarely found in marketing literature, including how well a given system finds intruders and how much work is required to use and maintain that system in a fully functioning network with significant daily traffic. Researchers and developers can specify which prototypical attacks can be found by their systems, but without access to the normal traffic generated by day-to-day work, they can not describe how well their systems detect real attacks while passing background traffic and avoiding false alarms. This information is critical: every declared intrusion requires time to review, regardless of whether it is a correct detection for which a real intrusion occurred, or whether it is merely a false alarm. To meet the needs of researchers, developers and ultimately system administrators we have developed the first objective, repeatable, and realistic measurement of intrusion detection system performance. Network traffic on an Air Force base was measured, characterized and subsequently simulated on an isolated network on which a few computers were used to simulate thousands of different Unix systems and hundreds of different users during periods of normal network traffic. Simulated attackers mapped the network, issued denial of service attacks, illegally gained access to systems, and obtained super-user privileges. Attack types ranged from old, well-known attacks, to new, stealthy attacks. Seven weeks of training data and two weeks of testing data were generated, filling more than 30 CD-ROMs. Methods and results from the 1998 DARPA intrusion detection evaluation will be highlighted, and preliminary plans for the 1999 evaluation will be presented.
READ LESS

Summary

Intrusion detection systems monitor the use of computers and the network over which they communicate, searching for unauthorized use, anomalous behavior, and attempts to deny users, machines or portions of the network access to services. Potential users of such systems need information that is rarely found in marketing literature, including...

READ MORE

Showing Results

1-4 of 4