Publications
The MIT-LL/IBM 2006 speaker recognition system: high-performance reduced-complexity recognition
Summary
Summary
Many powerful methods for speaker recognition have been introduced in recent years--high-level features, novel classifiers, and channel compensation methods. A common arena for evaluating these methods has been the NIST speaker recognition evaluation (SRE). In the NIST SRE from 2002-2005, a popular approach was to fuse multiple systems based upon...
Advanced language recognition using cepstra and phonotactics: MITLL system performance on the NIST 2005 Language Recognition Evaluation
Summary
Summary
This paper presents a description of the MIT Lincoln Laboratory submissions to the 2005 NIST Language Recognition Evaluation (LRE05). As was true in 2003, the 2005 submissions were combinations of core cepstral and phonotactic recognizers whose outputs were fused to generate final scores. For the 2005 evaluation, Lincoln Laboratory had...
Combining cross-stream and time dimensions in phonetic speaker recognition
Summary
Summary
Recent studies show that phonetic sequences from multiple languages can provide effective features for speaker recognition. So far, only pronunciation dynamics in the time dimension, i.e., n-gram modeling on each of the phone sequences, have been examined. In the JHU 2002 Summer Workshop, we explored modeling the statistical pronunciation dynamics...
Conditional pronunciation modeling in speaker detection
Summary
Summary
In this paper, we present a conditional pronunciation modeling method for the speaker detection task that does not rely on acoustic vectors. Aiming at exploiting higher-level information carried by the speech signal, it uses time-aligned streams of phones and phonemes to model a speaker's specific Pronunciation. Our system uses phonemes...
Phonetic speaker recognition using maximum-likelihood binary-decision tree models
Summary
Summary
Recent work in phonetic speaker recognition has shown that modeling phone sequences using n-grams is a viable and effective approach to speaker recognition, primarily aiming at capturing speaker-dependent pronunciation and also word usage. This paper describes a method involving binary-tree-structured statistical models for extending the phonetic context beyond that of...
The SuperSID project : exploiting high-level information for high-accuracy speaker recognition
Summary
Summary
The area of automatic speaker recognition has been dominated by systems using only short-term, low-level acoustic information, such as cepstral features. While these systems have indeed produced very low error rates, they ignore other levels of information beyond low-level acoustics that convey speaker information. Recently published work has shown examples...
Using prosodic and conversational features for high-performance speaker recognition : report from JHU WS'02
Summary
Summary
While there has been a long tradition of research seeking to use prosodic features, especially pitch, in speaker recognition systems, results have generally been disappointing when such features are used in isolation and only modest improvements have been set when used in conjunction with traditional cepstral GMM systems. In contrast...