Publications

Refine Results

(Filters Applied) Clear All

A photon-counting detector for exoplanet missions

Published in:
SPIE Vol. 8151, Techniques and Instrumentation for Detection of Exoplanets V, 5 September 2011, 81510K.

Summary

This paper summarizes progress of a project to develop and advance the maturity of photon-counting detectors for NASA exoplanet missions. The project, funded by NASA ROSES TDEM program, uses a 256x256 pixel silicon Geiger-mode avalanche photodiode (GM-APD) array, bump-bonded to a silicon readout circuit. Each pixel independently registers the arrival of a photon and can be reset and ready for another photon within 100 ns. The pixel has built-in circuitry for counting photo-generated events. The readout circuit is multiplexed to read out the photon arrival events. The signal chain is inherently digital, allowing for noiseless transmission over long distances. The detector always operates in photon counting mode and is thus not susceptible to excess noise factor that afflicts other technologies. The architecture should be able to operate with shot-noise-limited performance up to extremely high flux levels, >106 photons/second/pixel, and deliver maximum signal-to-noise ratios on the order of thousands for higher fluxes. Its performance is expected to be maintained at a high level throughout mission lifetime in the presence of the expected radiation dose.
READ LESS

Summary

This paper summarizes progress of a project to develop and advance the maturity of photon-counting detectors for NASA exoplanet missions. The project, funded by NASA ROSES TDEM program, uses a 256x256 pixel silicon Geiger-mode avalanche photodiode (GM-APD) array, bump-bonded to a silicon readout circuit. Each pixel independently registers the arrival...

READ MORE

Silicon single photon imaging detectors

Published in:
SPIE Vol. 8155, Infrared Sensors, Devices, and Applications; Single Photon Imaging II, 21 August 2011, 81551C.

Summary

Single-photon imaging detectors promise the ultimate in sensitivity by eliminating read noise. These devices could provide extraordinary benefits for photon-starved applications, e.g., imaging exoplanets, fast wavefront sensing, and probing the human body through transluminescence. Recent implementations are often in the form of sparse arrays that have less-than-unity fill factor. For imaging, fill factor is typically enhanced by using microlenses, at the expense of photometric and spatial information loss near the edges and corners of the pixels. Other challenges include afterpulsing and the potential for photon self-retriggering. Both effects produce spurious signal that can degrade the signal-to-noise ratio. This paper reviews development and potential application of single-photon-counting detectors, including highlights of initiatives in the Center for Detectors at the Rochester Institute of Technology and MIT Lincoln Laboratory. Current projects include single-photon-counting imaging detectors for the Thirty Meter Telescope, a future NASA terrestrial exoplanet mission, and imaging LIDAR detectors for planetary and Earth science space missions.
READ LESS

Summary

Single-photon imaging detectors promise the ultimate in sensitivity by eliminating read noise. These devices could provide extraordinary benefits for photon-starved applications, e.g., imaging exoplanets, fast wavefront sensing, and probing the human body through transluminescence. Recent implementations are often in the form of sparse arrays that have less-than-unity fill factor. For...

READ MORE

Showing Results

1-2 of 2