Publications

Refine Results

(Filters Applied) Clear All

Large-format Geiger-mode avalanche photodiode arrays and readout circuits

Published in:
IEEE J. Sel. Top. Quantum Electron., Vol. 24, No. 2, March/April 2018, 3800510.

Summary

Over the past 20 years, we have developed arrays of custom-fabricated silicon and InP Geiger-mode avalanche photodiode arrays, CMOS readout circuits to digitally count or time stamp single-photon detection events, and techniques to integrate these two components to make back-illuminated solid-state image sensors for lidar, optical communications, and passive imaging. Starting with 4 × 4 arrays, we have recently demonstrated 256 × 256 arrays, and are working to scale to megapixel-class imagers. In this paper, we review this progress and discuss key technical challenges to scaling to large format.
READ LESS

Summary

Over the past 20 years, we have developed arrays of custom-fabricated silicon and InP Geiger-mode avalanche photodiode arrays, CMOS readout circuits to digitally count or time stamp single-photon detection events, and techniques to integrate these two components to make back-illuminated solid-state image sensors for lidar, optical communications, and passive imaging...

READ MORE

A study of crosstalk in a 256 x 256 photon counting imager based on silicon Geiger-mode avalanche photodiodes

Published in:
IEEE Sens. J., Vol. 15, No. 4, April 2015, pp. 2123-32.

Summary

We demonstrate a 256 x 256 passive photon counting imager based on hybridization of back-illuminated silicon Geiger-mode avalanche photodiodes to an all-digital CMOS counting chip. Photon detection efficiencies in the 10%-20% are observed at visible wavelengths. The detection efficiency is currently limited by optical crosstalk that leads to elevation of dark count rates as the bias voltage on the photodiodes is increased. Both the time dependence of dark count activity during a gate time and the spatial structure of dark images were successfully explained using crosstalk-based models.
READ LESS

Summary

We demonstrate a 256 x 256 passive photon counting imager based on hybridization of back-illuminated silicon Geiger-mode avalanche photodiodes to an all-digital CMOS counting chip. Photon detection efficiencies in the 10%-20% are observed at visible wavelengths. The detection efficiency is currently limited by optical crosstalk that leads to elevation of...

READ MORE

New CCD imagers for adaptive optics wavefront sensors

Published in:
SPIE, Vol. 9148, Adaptive Optics Systems IV, 22 June 2014, 91485O.

Summary

We report on two recently developed charge-coupled devices (CCDs) for adaptive optics wavefront sensing, both designed to provide exceptional sensitivity (low noise and high quantum efficiency) in high-frame-rate low-latency readout applications. The first imager, the CCID75, is a back-illuminated 16-port 160x160 pixel CCD that has been demonstrated to operate at frame rates above 1,300 fps with noise of
READ LESS

Summary

We report on two recently developed charge-coupled devices (CCDs) for adaptive optics wavefront sensing, both designed to provide exceptional sensitivity (low noise and high quantum efficiency) in high-frame-rate low-latency readout applications. The first imager, the CCID75, is a back-illuminated 16-port 160x160 pixel CCD that has been demonstrated to operate at...

READ MORE

A photon-counting detector for exoplanet missions

Published in:
SPIE Vol. 8151, Techniques and Instrumentation for Detection of Exoplanets V, 5 September 2011, 81510K.

Summary

This paper summarizes progress of a project to develop and advance the maturity of photon-counting detectors for NASA exoplanet missions. The project, funded by NASA ROSES TDEM program, uses a 256x256 pixel silicon Geiger-mode avalanche photodiode (GM-APD) array, bump-bonded to a silicon readout circuit. Each pixel independently registers the arrival of a photon and can be reset and ready for another photon within 100 ns. The pixel has built-in circuitry for counting photo-generated events. The readout circuit is multiplexed to read out the photon arrival events. The signal chain is inherently digital, allowing for noiseless transmission over long distances. The detector always operates in photon counting mode and is thus not susceptible to excess noise factor that afflicts other technologies. The architecture should be able to operate with shot-noise-limited performance up to extremely high flux levels, >106 photons/second/pixel, and deliver maximum signal-to-noise ratios on the order of thousands for higher fluxes. Its performance is expected to be maintained at a high level throughout mission lifetime in the presence of the expected radiation dose.
READ LESS

Summary

This paper summarizes progress of a project to develop and advance the maturity of photon-counting detectors for NASA exoplanet missions. The project, funded by NASA ROSES TDEM program, uses a 256x256 pixel silicon Geiger-mode avalanche photodiode (GM-APD) array, bump-bonded to a silicon readout circuit. Each pixel independently registers the arrival...

READ MORE

Silicon single photon imaging detectors

Published in:
SPIE Vol. 8155, Infrared Sensors, Devices, and Applications; Single Photon Imaging II, 21 August 2011, 81551C.

Summary

Single-photon imaging detectors promise the ultimate in sensitivity by eliminating read noise. These devices could provide extraordinary benefits for photon-starved applications, e.g., imaging exoplanets, fast wavefront sensing, and probing the human body through transluminescence. Recent implementations are often in the form of sparse arrays that have less-than-unity fill factor. For imaging, fill factor is typically enhanced by using microlenses, at the expense of photometric and spatial information loss near the edges and corners of the pixels. Other challenges include afterpulsing and the potential for photon self-retriggering. Both effects produce spurious signal that can degrade the signal-to-noise ratio. This paper reviews development and potential application of single-photon-counting detectors, including highlights of initiatives in the Center for Detectors at the Rochester Institute of Technology and MIT Lincoln Laboratory. Current projects include single-photon-counting imaging detectors for the Thirty Meter Telescope, a future NASA terrestrial exoplanet mission, and imaging LIDAR detectors for planetary and Earth science space missions.
READ LESS

Summary

Single-photon imaging detectors promise the ultimate in sensitivity by eliminating read noise. These devices could provide extraordinary benefits for photon-starved applications, e.g., imaging exoplanets, fast wavefront sensing, and probing the human body through transluminescence. Recent implementations are often in the form of sparse arrays that have less-than-unity fill factor. For...

READ MORE

MBE back-illuminated silicon Geiger-mode avalanche photodiodes for enhanced ultraviolet response

Published in:
SPIE Vol. 8033, Advanced Photon Counting Techniques V, 25 April 2011, 80330D.

Summary

We have demonstrated a wafer-scale back-illumination process for silicon Geiger-mode avalanche photodiode arrays using Molecular Beam Epitaxy (MBE) for backside passivation. Critical to this fabrication process is support of the thin (< 10 um) detector during the MBE growth by oxide-bonding to a full-thickness silicon wafer. This back-illumination process makes it possible to build low-dark-count-rate single-photon detectors with high quantum efficiency extending to deep ultraviolet wavelengths. This paper reviews our process for fabricating MBE back-illuminated silicon Geigermode avalanche photodiode arrays and presents characterization of initial test devices.
READ LESS

Summary

We have demonstrated a wafer-scale back-illumination process for silicon Geiger-mode avalanche photodiode arrays using Molecular Beam Epitaxy (MBE) for backside passivation. Critical to this fabrication process is support of the thin ( 10 um) detector during the MBE growth by oxide-bonding to a full-thickness silicon wafer. This back-illumination process makes...

READ MORE

Adaptive optics wavefront sensors based on photon-counting detector arrays

Published in:
Proc. SPIE Vol. 7736, Adaptive Optics Systems II, 27 June 2010, 773610.

Summary

For adaptive optics systems, there is a growing demand for wavefront sensors that operate at higher frame rates and with more pixels while maintaining low readout noise. Lincoln Laboratory has been investigating Geiger·mode avalanche photodiode arrays integrated with CMOS readout circuits as a potential solution. This type of sensor counts photons digitally within the pixel, enabling data to be read out at high rates without the penalty of readout noise. After a brief overview of adaptive optics sensor development at Lincoln Laboratory, we will present the status of silicon Geiger· mode·APD technology along with future plans to improve performance.
READ LESS

Summary

For adaptive optics systems, there is a growing demand for wavefront sensors that operate at higher frame rates and with more pixels while maintaining low readout noise. Lincoln Laboratory has been investigating Geiger·mode avalanche photodiode arrays integrated with CMOS readout circuits as a potential solution. This type of sensor counts...

READ MORE

Hybridization process for back-illuminated silicon Geiger-mode avalanche photodiode arrays

Published in:
SPIE Vol. 7681, Advanced Photon Counting Techniques IV, 5 April 2010, 76810P.

Summary

We present a unique hybridization process that permits high-performance back-illuminated silicon Geiger-mode avalanche photodiodes (GM-APDs) to be bonded to custom CMOS readout integrated circuits (ROICs) - a hybridization approach that enables independent optimization of the GM-APD arrays and the ROICs. The process includes oxide bonding of silicon GM-APD arrays to a transparent support substrate followed by indium bump bonding of this layer to a signal-processing ROIC. This hybrid detector approach can be used to fabricate imagers with high-fill-factor pixels and enhanced quantum efficiency in the near infrared as well as large-pixel-count, small-pixel-pitch arrays with pixel-level signal processing. In addition, the oxide bonding is compatible with high-temperature processing steps that can be used to lower dark current and improve optical response in the ultraviolet.
READ LESS

Summary

We present a unique hybridization process that permits high-performance back-illuminated silicon Geiger-mode avalanche photodiodes (GM-APDs) to be bonded to custom CMOS readout integrated circuits (ROICs) - a hybridization approach that enables independent optimization of the GM-APD arrays and the ROICs. The process includes oxide bonding of silicon GM-APD arrays to...

READ MORE

Showing Results

1-8 of 8