Publications

Refine Results

(Filters Applied) Clear All

MBE back-illuminated silicon Geiger-mode avalanche photodiodes for enhanced ultraviolet response

Published in:
SPIE Vol. 8033, Advanced Photon Counting Techniques V, 25 April 2011, 80330D.

Summary

We have demonstrated a wafer-scale back-illumination process for silicon Geiger-mode avalanche photodiode arrays using Molecular Beam Epitaxy (MBE) for backside passivation. Critical to this fabrication process is support of the thin (< 10 um) detector during the MBE growth by oxide-bonding to a full-thickness silicon wafer. This back-illumination process makes it possible to build low-dark-count-rate single-photon detectors with high quantum efficiency extending to deep ultraviolet wavelengths. This paper reviews our process for fabricating MBE back-illuminated silicon Geigermode avalanche photodiode arrays and presents characterization of initial test devices.
READ LESS

Summary

We have demonstrated a wafer-scale back-illumination process for silicon Geiger-mode avalanche photodiode arrays using Molecular Beam Epitaxy (MBE) for backside passivation. Critical to this fabrication process is support of the thin ( 10 um) detector during the MBE growth by oxide-bonding to a full-thickness silicon wafer. This back-illumination process makes...

READ MORE

Hybridization process for back-illuminated silicon Geiger-mode avalanche photodiode arrays

Published in:
SPIE Vol. 7681, Advanced Photon Counting Techniques IV, 5 April 2010, 76810P.

Summary

We present a unique hybridization process that permits high-performance back-illuminated silicon Geiger-mode avalanche photodiodes (GM-APDs) to be bonded to custom CMOS readout integrated circuits (ROICs) - a hybridization approach that enables independent optimization of the GM-APD arrays and the ROICs. The process includes oxide bonding of silicon GM-APD arrays to a transparent support substrate followed by indium bump bonding of this layer to a signal-processing ROIC. This hybrid detector approach can be used to fabricate imagers with high-fill-factor pixels and enhanced quantum efficiency in the near infrared as well as large-pixel-count, small-pixel-pitch arrays with pixel-level signal processing. In addition, the oxide bonding is compatible with high-temperature processing steps that can be used to lower dark current and improve optical response in the ultraviolet.
READ LESS

Summary

We present a unique hybridization process that permits high-performance back-illuminated silicon Geiger-mode avalanche photodiodes (GM-APDs) to be bonded to custom CMOS readout integrated circuits (ROICs) - a hybridization approach that enables independent optimization of the GM-APD arrays and the ROICs. The process includes oxide bonding of silicon GM-APD arrays to...

READ MORE

Showing Results

1-2 of 2