Publications
Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis
August 14, 2015
Journal Article
Published in:
Ann. Phys., Vol. 527, No. 7-8, 2015, pp. 513-22.
Summary
Microsphere-assisted imaging has emerged as an extraordinary simple technique of obtaining optical super-resolution. This work addresses two central problems in developing this technology: i) methodology of the resolution measurements and ii) limited field-of-view provided by each sphere. It is suggested that a standard method of resolution analysis in far-field microscopy based on convolution with the point-spread function can be extended into the superresolution area. This allows developing a unified approach to resolution measurements, which can be used for comparing results obtained by different techniques. To develop the surface scanning functionality, the high-index (n ~ 2) barium titanate glass microspheres were embedded in polydimethylsiloxane (PDMS) thin-films. It is shown that such films adhere to the surface of nanoplasmonic structures so that the tips of embedded spheres experience the objects' optical near-fields. Based on rigorous criteria, the resolution ~lambda/6-lambda/7 (where lambda is the illumination wavelength) is demonstrated for arrays of Au dimers and bowties. Such films can be translated along the surface of investigated samples after liquid lubrication. It is shown that just after lubrication the resolution is diffraction limited, however the super-resolution gradually recovers as the lubricant evaporates.
Summary
Microsphere-assisted imaging has emerged as an extraordinary simple technique of obtaining optical super-resolution. This work addresses two central problems in developing this technology: i) methodology of the resolution measurements and ii) limited field-of-view provided by each sphere. It is suggested that a standard method of resolution analysis in far-field microscopy...
READ MORE