Publications

Refine Results

(Filters Applied) Clear All

Continuous security metrics for prevalent network threats - introduction and first four metrics

Summary

The goal of this work is to introduce meaningful security metrics that motivate effective improvements in network security. We present a methodology for directly deriving security metrics from realistic mathematical models of adversarial behaviors and systems and also a maturity model to guide the adoption and use of these metrics. Four security metrics are described that assess the risk from prevalent network threats. These can be computed automatically and continuously on a network to assess the effectiveness of controls. Each new metric directly assesses the effect of controls that mitigate vulnerabilities, continuously estimates the risk from one adversary, and provides direct insight into what changes must be made to improve security. Details of an explicit maturity model are provided for each metric that guide security practitioners through three stages where they (1) Develop foundational understanding, tools and procedures, (2) Make accurate and timely measurements that cover all relevant network components and specify security conditions to test, and (3) Perform continuous risk assessments and network improvements. Metrics are designed to address specific threats, maintain practicality and simplicity, and motivate risk reduction. These initial four metrics and additional ones we are developing should be added incrementally to a network to gradually improve overall security as scores drop to acceptable levels and the risks from associated cyber threats are mitigated.
READ LESS

Summary

The goal of this work is to introduce meaningful security metrics that motivate effective improvements in network security. We present a methodology for directly deriving security metrics from realistic mathematical models of adversarial behaviors and systems and also a maturity model to guide the adoption and use of these metrics...

READ MORE

Cyber situational awareness through operational streaming analysis

Published in:
MILCOM 2011, IEEE Military Communications Conf., 7-10 November 2011, pp. 1152-1157.

Summary

As the scope and scale of Internet traffic continue to increase the task of maintaining cyber situational awareness about this traffic becomes ever more difficult. There is strong need for real-time on-line algorithms that characterize high-speed / high-volume data to support relevant situational awareness. Recently, much work has been done to create and improve analysis algorithms that operate in a streaming fashion (minimal CPU and memory utilization) in order to calculate important summary statistics (moments) of this network data for the purpose of characterization. While the research literature contains improvements to streaming algorithms in terms of efficiency and accuracy (i.e. approximation with error bounds), the literature lacks research results that demonstrate streaming algorithms in operational situations. The focus of our work is the development of a live network situational awareness system that relies upon streaming algorithms for the determination of important stream characterizations and also for the detection of anomalous behavior. We present our system and discuss its applicability to situational awareness of high-speed networks. We present refinements and enhancements that we have made to a well-known streaming algorithm and improve its performance as applied within our system. We also present performance and detection results of the system when it is applied to a live high-speed mid-scale enterprise network.
READ LESS

Summary

As the scope and scale of Internet traffic continue to increase the task of maintaining cyber situational awareness about this traffic becomes ever more difficult. There is strong need for real-time on-line algorithms that characterize high-speed / high-volume data to support relevant situational awareness. Recently, much work has been done...

READ MORE

Temporally oblivious anomaly detection on large networks using functional peers

Published in:
IMC'10, Proc. of the ACM SIGCOMM Internet Measurement Conf., 1 November 2010, pp. 465-471.

Summary

Previous methods of network anomaly detection have focused on defining a temporal model of what is "normal," and flagging the "abnormal" activity that does not fit into this pre-trained construct. When monitoring traffic to and from IP addresses on a large network, this problem can become computationally complex, and potentially intractable, as a state model must be maintained for each address. In this paper, we present a method of detecting anomalous network activity without providing any historical context. By exploiting the size of the network along with the minimal overhead of NetFlow data, we are able to model groups of hosts performing similar functions to discover anomalous behavior. As a collection, these anomalies can be further described with a few high-level characterizations and we provide a means for creating and labeling these categories. We demonstrate our method on a very large-scale network consisting of 30 million unique addresses, focusing specifically on traffic related to web servers.
READ LESS

Summary

Previous methods of network anomaly detection have focused on defining a temporal model of what is "normal," and flagging the "abnormal" activity that does not fit into this pre-trained construct. When monitoring traffic to and from IP addresses on a large network, this problem can become computationally complex, and potentially...

READ MORE

Machine learning in adversarial environments

Published in:
Mach. Learn., Vol. 81, No. 2, November 2010, pp. 115-119.

Summary

Whenever machine learning is used to prevent illegal or unsanctioned activity and there is an economic incentive, adversaries will attempt to circumvent the protection provided. Constraints on how adversaries can manipulate training and test data for classifiers used to detect suspicious behavior make problems in this area tractable and interesting. This special issue highlights papers that span many disciplines including email spam detection, computer intrusion detection, and detection of web pages deliberately designed to manipulate the priorities of pages returned by modern search engines. The four papers in this special issue provide a standard taxonomy of the types of attacks that can be expected in an adversarial framework, demonstrate how to design classifiers that are robust to deleted or corrupted features, demonstrate the ability of modern polymorphic engines to rewrite malware so it evades detection by current intrusion detection and antivirus systems, and provide approaches to detect web pages designed to manipulate web page scores returned by search engines. We hope that these papers and this special issue encourages the multidisciplinary cooperation required to address many interesting problems in this relatively new area including predicting the future of the arms races created by adversarial learning, developing effective long-term defensive strategies, and creating algorithms that can process the massive amounts of training and test data available for internet-scale problems.
READ LESS

Summary

Whenever machine learning is used to prevent illegal or unsanctioned activity and there is an economic incentive, adversaries will attempt to circumvent the protection provided. Constraints on how adversaries can manipulate training and test data for classifiers used to detect suspicious behavior make problems in this area tractable and interesting...

READ MORE

Bridging the gap between linguists and technology developers: large-scale, sociolinguistic annotation for dialect and speaker recognition

Published in:
Proc. 6th Int. Conf. on Language Resources and Evaluation, LREC, 28 May 2008.

Summary

Recent years have seen increased interest within the speaker recognition community in high-level features including, for example, lexical choice, idiomatic expressions or syntactic structures. The promise of speaker recognition in forensic applications drives development toward systems robust to channel differences by selecting features inherently robust to channel difference. Within the language recognition community, there is growing interest in differentiating not only languages but also mutually intelligible dialects of a single language. Decades of research in dialectology suggest that high-level features can enable systems to cluster speakers according to the dialects they speak. The Phanotics (Phonetic Annotation of Typicality in Conversational Speech) project seeks to identify high-level features characteristic of American dialects, annotate a corpus for these features, use the data to dialect recognition systems and also use the categorization to create better models for speaker recognition. The data, once published, should be useful to other developers of speaker and dialect recognition systems and to dialectologists and sociolinguists. We expect the methods will generalize well beyond the speakers, dialects, and languages discussed here and should, if successful, provide a model for how linguists and technology developers can collaborate in the future for the benefit of both groups and toward a deeper understanding of how languages vary and change.
READ LESS

Summary

Recent years have seen increased interest within the speaker recognition community in high-level features including, for example, lexical choice, idiomatic expressions or syntactic structures. The promise of speaker recognition in forensic applications drives development toward systems robust to channel differences by selecting features inherently robust to channel difference. Within the...

READ MORE

An interactive attack graph cascade and reachability display

Published in:
VizSEC 2007, Proc. of the Workshop on Visualization for Computer Security, 29 October 2007, pp. 221-236.

Summary

Attack graphs for large enterprise networks improve security by revealing critical paths used by adversaries to capture network assets. Even with simplification, current attack graph displays are complex and difficult to relate to the underlying physical networks. We have developed a new interactive tool intended to provide a simplified and more intuitive understanding of key weaknesses discovered by attack graph analysis. Separate treemaps are used to display host groups in each subnet and hosts within each treemap are grouped based on reachability, attacker privilege level, and prerequisites. Users position subnets themselves to reflect their own intuitive grasp of network topology. Users can also single-step the attack graph to successively add edges that cascade to show how attackers progress through a network and learn what vulnerabilities or trust relationships allow critical steps. Finally, an integrated reachability display demonstrates how filtering devices affect host-to-host network reachability and influence attacker actions. This display scales to networks with thousands of hosts and many subnets. Rapid interactivity has been achieved because of an efficient C++ computation engine (a program named NetSPA) that performs attack graph and reachability computations, while a Java application manages the display and user interface.
READ LESS

Summary

Attack graphs for large enterprise networks improve security by revealing critical paths used by adversaries to capture network assets. Even with simplification, current attack graph displays are complex and difficult to relate to the underlying physical networks. We have developed a new interactive tool intended to provide a simplified and...

READ MORE

Tuning intrusion detection to work with a two encryption key version of IPsec

Published in:
IEEE MILCOM 2007, 29-31 October 2007, pp. 3977-3983.

Summary

Network-based intrusion detection systems (NIDSs) are one component of a comprehensive network security solution. The use of IPsec, which encrypts network traffic, renders network intrusion detection virtually useless unless traffic is decrypted at network gateways. Host-based intrusion detection systems (HIDSs) can provide some of the functionality of NIDSs but with limitations. HIDSs cannot perform a network-wide analysis and can be subverted if a host is compromised. We propose an approach to intrusion detection that combines HIDS, NIDS, and a version of IPsec that encrypts the header and the body of IP packets separately ("Two-Zone IPsec"). We show that all of the network events currently detectable by the Snort NIDS on unencrypted network traffic are also detectable on encrypted network traffic using this approach. The NIDS detects network-level events that HIDSs have trouble detecting and HIDSs detect application-level events that can't be detected by the NIDS.
READ LESS

Summary

Network-based intrusion detection systems (NIDSs) are one component of a comprehensive network security solution. The use of IPsec, which encrypts network traffic, renders network intrusion detection virtually useless unless traffic is decrypted at network gateways. Host-based intrusion detection systems (HIDSs) can provide some of the functionality of NIDSs but with...

READ MORE

PANEMOTO: network visualization of security situational awareness through passive analysis

Summary

To maintain effective security situational awareness, administrators require tools that present up-to-date information on the state of the network in the form of 'at-a-glance' displays, and that enable rapid assessment and investigation of relevant security concerns through drill-down analysis capability. In this paper, we present a passive network monitoring tool we have developed to address these important requirements, known a Panemoto (PAssive NEtwork MOnitoring TOol). We show how Panemoto enumerates, describes, and characterizes all network components, including devices and connected networks, and delivers an accurate representation of the function of devices and logical connectivity of networks. We provide examples of Panemoto's output in which the network information is presented in two distinct but related formats: as a clickable network diagram (through the use of NetViz), a commercially available graphical display environment) and as statically-linked HTML pages, viewable in any standard web browser. Together, these presentation techniques enable a more complete understanding of the security situation of the network than each does individually.
READ LESS

Summary

To maintain effective security situational awareness, administrators require tools that present up-to-date information on the state of the network in the form of 'at-a-glance' displays, and that enable rapid assessment and investigation of relevant security concerns through drill-down analysis capability. In this paper, we present a passive network monitoring tool...

READ MORE

Making network intrusion detection work with IPsec

Published in:
MIT Lincoln Laboratory Report TR-1121

Summary

Network-based intrusion detection systems (NIDSs) are one component of a comprehensive network security solution. The use of IPsec, which encrypts network traffic, renders network intrusion detection virtually useless unless traffic is decrypted at network gateways. One alternative to NIDSs, host-based intrusion detection systems (HIDSs), provides some of the functionality of NIDSs but with limitations. HIDSs cannot perform a network-wide analysis and can be subverted if a host is compromised. We propose an approach to intrusion detection that combines HIDS, NIDS, and a version of IPsec that encrypts the header and the body of IP packets separately. We refer to the latter generically as Two-Key IPsec. We show that all of the network events currently detectable by the Snort NIDS on unencrypted network traffic are also detectable on encrypted network traffic using this approach. The NIDS detects network-level events that HIDSs have trouble detecting and HIDSs detect application-level events that can't be detected by the NIDS.
READ LESS

Summary

Network-based intrusion detection systems (NIDSs) are one component of a comprehensive network security solution. The use of IPsec, which encrypts network traffic, renders network intrusion detection virtually useless unless traffic is decrypted at network gateways. One alternative to NIDSs, host-based intrusion detection systems (HIDSs), provides some of the functionality of...

READ MORE

Experience using active and passive mapping for network situational awareness

Published in:
5th IEEE Int. Symp. on Network Computing and Applications NCA06, 24-26 July 2006, pp. 19-26.

Summary

Passive network mapping has often been proposed as an approach to maintain up-to-date information on networks between active scans. This paper presents a comparison of active and passive mapping on an operational network. On this network, active and passive tools found largely disjoint sets of services and the passive system took weeks to discover the last 15% of active services. Active and passive mapping tools provided different, not complimentary information. Deploying passive mapping on an enterprise network does not reduce the need for timely active scans due to non-overlapping coverage and potentially long discovery times.
READ LESS

Summary

Passive network mapping has often been proposed as an approach to maintain up-to-date information on networks between active scans. This paper presents a comparison of active and passive mapping on an operational network. On this network, active and passive tools found largely disjoint sets of services and the passive system...

READ MORE