Histopathology is a critical tool in the diagnosis and stratification of cancer. Digital Pathology involves the scanning of stained and fixed tissue samples to produce high-resolution images that can be used for computer-aided diagnosis and research. A common challenge in digital pathology related to the quality and characteristics of staining, which can vary widely from center to center and also within the same institution depending on the age of the stain and other human factors. In this paper we examine the use of deep learning models for colorizing H&E stained tissue images and compare the results with traditional image processing/statistical approaches that have been developed for standardizing or normalizing histopathology images. We adapt existing deep learning models that have been developed for colorizing natural images and compare the results with models developed specifically for digital pathology. Our results show that deep learning approaches can standardize the colorization of H&E images. The performance as measured by the chi-square statistic shows that the deep learning approach can be nearly as good as current state-of-the art normalization methods.