Distribution of aviation weather hazard information: low altitude wind shear
Summary
Weather Hazard Information distribution is a necessary component for a successful system of weather hazard avoidance for aviation. It is a very important component, but not the only one. In order to be successful, a complete set of components must be included in the system: 1) Accurate Conceptual Model (Appropriate models of the physical process responsible for generating the hazard); 2) Production Infrastructure (System of tools [hardware, software and manpower]; the raw data feeds necessary for production of the hazard information and a standardized message format); 3) Quality Control Infrastructure (System of tools [hardware, software and manpower] & data feeds necessary for identifying and correcting erroneous information immediately); 4) Distribution Infrastructure (A method to relay, in a timely manner, only the information pertinent to the specific user); 5) Policies and Procedures (There must be clearly defined expectations of actions required of the users and recipients of the hazard information); 5) Training (The users and recipients as well as individuals responsible for production and quality control of the information must receive initial and recurrent training regarding actions required). ICAO in their Annex 3, Chapter 7 titled, SIGMET Information, Aerodrome Warnings and Wind Shear Warnings [ICAO 19981, describes in part one such system for weather hazard avoidance. ICAO does a good job defining the necessary production infrastructure. ICAO especially has been successful in defining the standardized message format. The format for SlGMETs is described in detail in Annex 3. But, an international organization Such as ICAO is limited in its scope of influence. Quality control of the SIGMET product and the distribution of the SIGMET is, in large part, beyond ICAO’s control. In addition, the actual weather hazard avoidance policies, procedures and training must be accomplished internally by each individual commercial aviation operator. Since each component listed above is directly dependent on the other five for a successful weather hazard avoidance system, Northwest Airlines (NWA) has chosen to attempt to address all six components of the system internally with use of the NWA Turbulence Plot System (TPS) [Fahey et. al. 2000].