Electrical characteristics of microburst-producing storms in Denver
Coordinated Doppler radar and electrical measurements of thunderstorm microbursts were initiated by Lincoln Laboratory and the MIT Weather Radar group in Huntsville, AL in 1987. These measurements were intended to identify electrical precursors to aviation hazards at ground level and to study the relationship between the state of cloud convective development and the prevalent lightning type. The results of the Huntsville Study (Williams and Orville, 1988; Williamd et al., 1988) showed pronounced peaks in intracloud lightning activity and radar reflectivity above the melting level 5-10 minutes prior to maximum outflow velocities at the surface. A similar behavior has been reported by Goodman et al. (1988) for a thunderstorm observed in COHMEX in the same region. These observations support a prominent role for ice, both in promoting the intracloud lightning aloft and in subsequently driving the outflow by virtue of the melting process. All Huntsville cases studied were 'wet' microbursts with maximum low level reflectivity factors greater than 50 dBZ. The parent storms were deep (H>11km) and electrically active (flash rate greater than or equal to 1min^-1). Recent microburst studies in Denver (Hjelmfelt, 1987); Biron and isaminger, 1989) have identified, in addition to a majority of 'wet' microbursts, substantial numbers of dry microburst-producing storms (Z<10^3 mm^6/m^3) with elevated cloud bases and modest radar cloud tops. The present studies were aimed at determining to what extent the electrical manifestations observed in Huntsville were prevalent in Denver. This paper presents some preliminary results for the Denver measurements from the summer of 1988.