The Integrated Terminal Weather System (ITWS) storm cell information and weather impacted airspace detection algorithm
Summary
The Integrated Terminal Weather System (ITWS) is an FAA-sponsored program (Sankey, 1993; Ducot, 1993) whose objective is to acquire data and products from a variety of weather sensors, integrate the data and create aviation weather products for users, such as Air Traffic (AT) controllers and traffic managers, pilots, and airline and airport operations managers. The goal of ITWS is to increase capacity at airports, reduce controller workload, and enhance safety. The objective of the ITWS Storm Cell Information (StoCel) and Weather Impacted Airspace (WIA) Detection products is to identify storm cell characteristics (echo top, echo bottom, presence of heavy rain, hail, etc.) and airspace that pilots are likely to avoid because it contains hazardous weather. The StoCel/WIA products rely on the integration of pencil-beam data and products and Air Surveillance Radar (ASR-9) Weather Channel data. ASR-9 radars are useful because they cover the entire airspace of interest, perform a volume update at roughly 30-second intervals, and will be the weather representation most widely available to the Air Traffic Control (ATC) community. On the other hand, the ASR-9 has a 4.8° fan beam which results in a vertical integration over the depth of a storm, so information on the vertical structure of storms is lost. In addition, the current ASR-9 Weather Channel may produce false weather regions during ducting or anomalous propagation (AP) conditions. Nearby WSR-88D radars also cover the entire airspace of interest and provide indications of storm vertical structure. However, the volume update rate is typically on the order of 5 to 10 minutes, depending on the scanning strategy. TDWR radars perform volume updates about every 2.5 to 3 minutes, but perform sector scans that do not cover the entire airspace. Integration of the data from these various sensors produces a product that is superior to a product based on any single sensor. Field tests of components of this algorithm were conducted at Dallas-Ft. Worth (DFW) and Orlando (MCO) International Airports during the summer of 1993. The objectives of these tests are to evaluate the technical performance of the algorithm and the validate the operational concept. This paper will describe the algorithm, and discuss the operational concept and functional requirements for the product. A summary of the results and experiences of the Summer 1993 field tests, and a preliminary evaluation of the performance of the algorithm based on off-line and real-time tests will be provided at the conference.