Summary
During 1984 and 1985 M.I.T. Lincoln Laboratory, under the sponsorship of the Federal Aviation Administration (FAA) conducted a measurement program in the Memphis, Tennessee, area to study low-level wind shear events and other weather phenomena that are potentially hazardous to aircraft operations, with particular emphasis on those issues related to the Terminal Doppler Weather Radar (TDWR). The principal sensor for the measurement program was the S-band FAA-Lincoln Laboratory Testbed Doppler Weather Radar (FL2) which incorporates many of the functional features of the TDWR. Both FL2 and a C-band Doppler Weather Radar operated by the University of North Dakota (UND) obtained reflectivity, mean velocity and spectrum width measurements with a radar geometry and scan sequences to facilitate determining the surface outflow features of microbursts at the anticipated TDWR ranges. A 30-station network of automatic weather stations (mesonet) collected I-min averages of temperature, humidity, pressure, wind speed and direction, and total rainfall, plus the peak wind speed during each minute; this system operated from about March through November 1984 and 1985. Finally, the UND Citation aircraft operated two 3-week periods during 1985, collecting thermodynamical, kinematical and microphysical data within and around selected storms in the area as well as providing in situ truth for locations and intensity of turbulence. This report describes the principal initial results from the Memphis operations, stressing the results from 1985 when the FL2 radar was fully operational. These results are compared to those from previous studies of wind-shear programs, e.g., NIMROD near Chicago, JAWS and CLAWS near Denver. During 1985, 102 microbursts were identified in real time along with 81 gust fronts. One of the dominant results is that most microbursts in the mid-south are wet; that is, they are accompanied by significant rainfall. This is in contrast, for example, to the results from Denver where more than half of all microbursts have little or no appreciable rain reaching the ground. Aside from this major difference, microbursts near Memphis were similar to those found elsewhere in the country in terms of wind shear magnitude. The report also gives more representative results from the aircraft operations and discusses the effectiveness of the ground-clutter filters used on the FL2 radar.