Summary
The Airport Surveillance Radar 9 (ASR-9) is a terminal radar that was deployed by the Federal Aviation Administration (FAA) during the early 1990's at more than 130 of the busiest airports in the United States. The ASR-9 Processor Augmentation Card (9-PAC), developed at MIT Lincoln Laboratory, is a processor board enhancement for the ASR-9 Array Signal Processor (ASP) that provides increases in processing speed, memory size, and programming. The increased capabilities of the 9PAC hardware made it possible for new surveillance algorithms to be developed in software to provide improved primary radar and beacon surveillance performance. The 9PAC project was developed in two phases. Phase I, which addressed the beacon reflection false target problem, was completed, and is currently being deployed nationwide by the FAA on a plug and play basis. Phase II addresses the primary radar surveillance problems, which include automation of the road and ground clutter censoring process, improving the rejection of false targets, and improving the detection and tracking of aircraft targets. The 9PAC also reduces the life-cycle maintenance cost of the ASR-9 in the Phase II configuration, in which a single 9PAC card replaces four ASP cards. This report describes the improvements to the radar Correlation and Interpolation (C&I) process, which is responsible for creating aircraft target reports and filtering out false targets. [Not Complete]