Summary
Wake vortices are a by-product of lift generated by aircraft. The vortices from the wings and other lift surfaces such as flaps spin off and trail behind an aircraft (see Figure 1). These vortices can be a hazard to other aircraft, especially lighter aircraft that are following at low altitude. For this reason, numerous air traffic control standards require increased aircraft separation when wake vortex avoidance is a concern. These separation standards provide the required safety: there has never been a fatal accident in the U.S. due to wake vortices when wake vortex separations were provided by air traffic controllers. Wake vortex behavior is strongly dependent on atmospheric conditions, giving rise to the possibility that wake behavior can be predicted with enough precision to allow reduced use of wake vortex avoidance separations. Because vortices can not be seen, and their location and strength are not currently known or predicted, separation standards and air traffic procedures are designed to account for the worst case wake behavior. Because of this, the imposed aircraft separations are larger than required much of the time, reducing terminal capacity and causing increased traffic delay. If procedures or technologies can be developed to reduce the use of wake avoidance separations, terminal area delay reduction may be achieved. A prototype wind dependent wake separation system is operating in Frankfurt, Germany for arrivals into closely spaced parallel runways. The system uses wind prediction at the surface to determine when separation for wake vortex avoidance must be used and when the extra separation does not need to be used [Konopka, 2001][Frech, et al., 2002]. This led the FAA to ask the question: does the wind prediction algorithm used in Frankfurt, or perhaps another algorithm, have sufficient performance to consider it for possible use in the US for a closely spaced parallel runway departure system? This paper reports on a research effort to answer that question. This is part of a larger FAA and NASA research effort [Lang et al., 2003].