Publications

Refine Results

(Filters Applied) Clear All

Aircraft laser strike geolocation system

Published in:
17th AIAA Aviation Technology, Integration, and Operations Conf., 5-9 June 2017.

Summary

Laser strikes against aircraft are increasing at an alarming rate, driven by the availability of cheap powerful lasers and a lack of deterrence due to the challenges of locating and apprehending perpetrators. Although window coatings and pilot goggles effectively block laser light, uptake has been low due to high cost and pilot reluctance. This paper describes the development and testing of a proof-of-concept ground based sensor system to rapidly geolocate the origin of a laser beam in a protected region of airspace and disseminate this information to law enforcement to allow a timely and targeted response. Geolocation estimates with accuracies of better than 20 m have been demonstrated within 30 seconds of an event at a range of 8.9 nmi with a 450 mW laser. Recommendations for an operational prototype at an airport are also described.
READ LESS

Summary

Laser strikes against aircraft are increasing at an alarming rate, driven by the availability of cheap powerful lasers and a lack of deterrence due to the challenges of locating and apprehending perpetrators. Although window coatings and pilot goggles effectively block laser light, uptake has been low due to high cost...

READ MORE

Revised multifunction phased array radar (MPAR) network siting analysis(1.82 MB)

Author:
Published in:
Project Report ATC-425, MIT Lincoln Laboratory

Summary

Six scenarios are considered for replacing current National Airspace System ground-based air traffic and weather surveillance radars with a network of multifunction phased array radars. It is shown that equivalent or better coverage relative to existing coverage can be maintained while reducing the total radar count, 14% to 35%, depending on the scenario.
READ LESS

Summary

Six scenarios are considered for replacing current National Airspace System ground-based air traffic and weather surveillance radars with a network of multifunction phased array radars. It is shown that equivalent or better coverage relative to existing coverage can be maintained while reducing the total radar count, 14% to 35%, depending...

READ MORE

A statistical learning approach to the modeling of aircraft taxi time

Published in:
29th Digital Avionics Systems Conf., 3 October 2010.

Summary

Modeling aircraft taxi operations is an important element in understanding current airport performance and where opportunities may lie for improvements. A statistical learning approach to modeling aircraft taxi time is presented in this paper. This approach allows efficient identification of relatively simple and easily interpretable models of aircraft taxi time, which are shown to yield remarkably accurate predictions when tested on actual data.
READ LESS

Summary

Modeling aircraft taxi operations is an important element in understanding current airport performance and where opportunities may lie for improvements. A statistical learning approach to modeling aircraft taxi time is presented in this paper. This approach allows efficient identification of relatively simple and easily interpretable models of aircraft taxi time...

READ MORE

Comment on "Reinterpreting aircraft measurement in anisotropic scaling turbulence" by Lovejoy et al. (2009)

Published in:
Atmos. Chem. Phys., Vol. 10, No. 3, 2010, pp. 1401-1402.

Summary

Recently, Lovejoy et al. (2009) argued that the steep ~k-3 atmospheric kinetic energy spectrum at synoptic scales (>~1000km) observed by aircraft is a spurious artefact of aircraft following isobars instead of isoheights. Without taking into account the earth's rotation they hypothesize that the horizontal atmospheric energy spectrum should scale as k?5/3 at all scales. We point out that the approximate k?3- spectrum at synoptic scales has been observed by a number of non-aircraft means since the 1960s and that general circulation models and other current models have successfully produced this spectrum. We also argue that the vertical movements of the aircraft are far too small to cause any strong effect on the measured spectrum at synoptic scales.
READ LESS

Summary

Recently, Lovejoy et al. (2009) argued that the steep ~k-3 atmospheric kinetic energy spectrum at synoptic scales (>~1000km) observed by aircraft is a spurious artefact of aircraft following isobars instead of isoheights. Without taking into account the earth's rotation they hypothesize that the horizontal atmospheric energy spectrum should scale as...

READ MORE

Encounter models for unconventional aircraft version 1.0

Published in:
Project Report ATC-348, MIT Lincoln Laboratory

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are flying under Visual Flight Rules (VFR) and are not in contact with air traffic control. In response to the need to develop a model of these types of encounters, Lincoln Laboratory undertook an extensive data collection and modeling effort involving more than 96,000 unconventional aircraft tracks. The outcome of this effort was nine individual models encompassing ultralights, gliders, balloons, and airships. The models use Bayesian networks to represent relationships between dynamic variables and to construct random trajectories that are statistically similar to those observed in the data. The intruder trajectories can be used in fast-time Monte Carlo simulations to estimate collision risk. The model described in this report is one of three developed by Lincoln Laboratory. A correlated encounter model has been developed to represent situations in which it is likely that there would be air traffic control intervention prior to a close encounter. The correlated model applies to encounters involving aircraft receiving Air Traffic Control (ATC) services and with transponders. An encounter with an intruder that does not have a transponder is uncorrelated in the sense that it is unlikely that there would be prior intervention by air traffic control. The uncorrelated model described in this report is based on global databases of pilot-submitted track data. This work is a follow-on to an uncorrelated conventional model developed from recorded radar tracks from aircraft using a 1200 transponder code. A byproduct of this encounter modeling effort was the extraction of feature distributions for unconventional aircraft. This provides an extensive collection of unconventional aircraft behavior in the airspace.
READ LESS

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are...

READ MORE

Enhanced regional situational awareness

Published in:
Lincoln Laboratory Journal, Vol. 16, No. 2, June 2007, pp. 355-380.

Summary

Airspace protection in the capital area is provided by an Integrated Air Defense System (IADS) created through the coordinated response of U.S. government and local law-enforcement agencies, including the Department of Defense, the Department of Homeland Security, the Federal Aviation Administration, and the Capitol Police. The IADS includes U.S. Coast Guard helicopters, fighter aircraft, and airborne early-warning aircraft cued by surveillance radars. Under Operation Noble Eagle, the response to a threat includes warning flares deployed from fighter aircraft and, ultimately, the use of surface and air-launched missiles. Selecting the appropriate response requires a means for rapidly assessing the aircraft threat. New and existing sensors must be simultaneously cued to the target of interest and integrated with existing sources of information to display a common-air-picture display to support the decision makers. This article describes the development of an Enhanced Regional Situation Awareness system, an integrated sensing and decision support system developed for the complex and busy airspace surrounding the National Capital Region.
READ LESS

Summary

Airspace protection in the capital area is provided by an Integrated Air Defense System (IADS) created through the coordinated response of U.S. government and local law-enforcement agencies, including the Department of Defense, the Department of Homeland Security, the Federal Aviation Administration, and the Capitol Police. The IADS includes U.S. Coast...

READ MORE

Commercial aviation encounters with severe low altitude turbulence

Published in:
11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

Turbulence encounters continue to be one of the largest sources of personal injury in both commercial and general aviation. A significant percentage of these encounters occur without warning, at low altitudes, and have been observed to occur outside of the strong reflectivity storm cores where pilots typically anticipate severe wind shear and/or turbulence. In this paper, statistics illustrating the altitude distributions of specific turbulence encounters are presented. These results suggest that a significant percentage of the moderate and greater turbulence encounters occur at low altitudes. One particularly dangerous form of low altitude turbulence, often associated with convective storms, is the buoyancy wave (BW). Observational evidence of commercial airline encounters with these phenomena indicates that they can cause an impairment of aircraft control that results in significant attitude and altitude fluctuations. Over the past two years several serious aircraft incidents involving low altitude turbulence have been reported. In our investigation of the meteorological conditions surrounding these incidents, there are strong indications that buoyancy waves played a major role in initiating the turbulence. While encounters with this type of buoyancy wave-induced turbulence can be as severe as microburst wind shear encounters, they are typically not detected by current wind shear detection systems. However, these phenomena do have detectable signatures. We suggest two modifications to existing wind shear detection systems that would make it possible to detect these potentially dangerous phenomena.
READ LESS

Summary

Turbulence encounters continue to be one of the largest sources of personal injury in both commercial and general aviation. A significant percentage of these encounters occur without warning, at low altitudes, and have been observed to occur outside of the strong reflectivity storm cores where pilots typically anticipate severe wind...

READ MORE

Wind prediction to support reduced wake separation standards for closely spaced parallel runway departures

Author:
Published in:
11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

Wake vortices are a by-product of lift generated by aircraft. The vortices from the wings and other lift surfaces such as flaps spin off and trail behind an aircraft (see Figure 1). These vortices can be a hazard to other aircraft, especially lighter aircraft that are following at low altitude. For this reason, numerous air traffic control standards require increased aircraft separation when wake vortex avoidance is a concern. These separation standards provide the required safety: there has never been a fatal accident in the U.S. due to wake vortices when wake vortex separations were provided by air traffic controllers. Wake vortex behavior is strongly dependent on atmospheric conditions, giving rise to the possibility that wake behavior can be predicted with enough precision to allow reduced use of wake vortex avoidance separations. Because vortices can not be seen, and their location and strength are not currently known or predicted, separation standards and air traffic procedures are designed to account for the worst case wake behavior. Because of this, the imposed aircraft separations are larger than required much of the time, reducing terminal capacity and causing increased traffic delay. If procedures or technologies can be developed to reduce the use of wake avoidance separations, terminal area delay reduction may be achieved. A prototype wind dependent wake separation system is operating in Frankfurt, Germany for arrivals into closely spaced parallel runways. The system uses wind prediction at the surface to determine when separation for wake vortex avoidance must be used and when the extra separation does not need to be used [Konopka, 2001][Frech, et al., 2002]. This led the FAA to ask the question: does the wind prediction algorithm used in Frankfurt, or perhaps another algorithm, have sufficient performance to consider it for possible use in the US for a closely spaced parallel runway departure system? This paper reports on a research effort to answer that question. This is part of a larger FAA and NASA research effort [Lang et al., 2003].
READ LESS

Summary

Wake vortices are a by-product of lift generated by aircraft. The vortices from the wings and other lift surfaces such as flaps spin off and trail behind an aircraft (see Figure 1). These vortices can be a hazard to other aircraft, especially lighter aircraft that are following at low altitude...

READ MORE

Designing a terminal area bird detection and monitoring system based on ASR-9 data

Published in:
3rd Joint Annual Meeting Bird Strike Committee, 27-30 August 2001.

Summary

Conflicts between birds and commercial aircraft are a noteworthy problem at both large and small airports [Cleary, 1999]. The risk factor for United States airports continues to increase due to the steady rise in take-off/landings and bird populations. There is a significant bird strike problem in the terminal area as shown by the incidents reported in the National Bird Strike Database [Cleary and Dolbeer, 1999]. The focus of bird strike mitigation in the past has centered primarily on wildlife management techniques. Recently, an Avian Hazard Advisory System (AHAS) has been developed to reduce the risks of bird strikes to military operations [Kelly, 1999]. This system uses a mosaic of data obtained from the Next Generation Weather Radar (NEXRAD). This sensor serves as an excellent tool for enroute bird advisories due to the radar coverage provided across the majority of the United States. However, its utility in the airport terminal environment is limited due to the slow update rate and the fact that the distance of most NEXRADs from the airport results in beam heights that are too high to detect low-altitude birds over the airport. The Federal Aviation Administration (FAA) operates two radar systems – the Terminal Doppler Weather Radar (TDWR), and the Airport Surveillance Radar (ASR-9) -- that could be used to help monitor bird activity at an airport in order to: 1. Provide continuously updated information on locations and approximate numbers of birds in flocks roosting or feeding on or near an airfield; 2. Generate real-time warnings of bird activity for dissemination to pilots of landing or departing aircraft by air traffic controllers or by direct data link. The TDWR provides wind shear warnings in the terminal area to enhance safety, while the ASR-9’s primary function is air traffic control. Both of these systems have been shown to detect biological echoes as well. Characteristics of the two radar systems have been examined and compared to determine capabilities for bird detection. Amongst other favorable factors, the high update rate and on-airport locale makes the ASR-9 a highly desirable platform for a bird detection and warning system for the terminal area. Data from an ASR-9 at Austin TX (AUS) equipped with a Weather Systems Processor (WSP) have been analyzed to assess the ASR-9's capability to detect and monitor bird activity. The WSP add-on provides a variety of radar base data products similar to those that would be available on all ASR-9s as part of an ASR-9 Service Life Extension Program (SLEP) currently underway. The Austin airport area is subject to large flocks of wintering migratory birds as well as a resident population of bats in close proximity to the airport. Radar data, visual observations and bird strike information during periods of active bird/bat movements have been collected for this study. An automated processing algorithm called the Terminal Avian Hazard Advisory System (TAHAS) is being developed to detect and track roosting and migratory birds using ASR-9 data. A key challenge will be the ability to discriminate biological from non-biological targets based on variables such as vertical continuity, variance or spectral width, and horizontal velocity distribution.
READ LESS

Summary

Conflicts between birds and commercial aircraft are a noteworthy problem at both large and small airports [Cleary, 1999]. The risk factor for United States airports continues to increase due to the steady rise in take-off/landings and bird populations. There is a significant bird strike problem in the terminal area as...

READ MORE

Rotating a weather map

Published in:
Dr. Dobb's J., Vol. 24, No. 6, June 1999, pp. 80-88.
Topic:

Summary

Introduction: I was recently part of a project developing a system for aircraft pilots to access the national ground weather-radar database while in flight. This weather-radar graphical database is generated from the outputs of the FAA and National Weather Service network of radars covering the continental United States and is updated every five minutes. Each pixel in the database covers a square measuring two kilometers (about one nautical mile) on a side. The content of each data pixel is a measure of the radar reflectivity measured at that location - radar reflectivity is proportional to the water content in the atmosphere (the precipitation rate). This graphical database is available through several commercial vendors - it's what you see displayed on The Weather Channel or during typical TV weather reports. Our system, on the other hand, provides a low-speed digital datalink connection from an FAA ground computer to an avionics computer/display located in the aircraft cockpit.
READ LESS

Summary

Introduction: I was recently part of a project developing a system for aircraft pilots to access the national ground weather-radar database while in flight. This weather-radar graphical database is generated from the outputs of the FAA and National Weather Service network of radars covering the continental United States and is...

READ MORE